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Abstract

Santisteban Hidalgo, Juan Andrés; Braga, Arthur Martins Bar-
bosa (Advisor); Kubrusly, Alan Conci (Co-Advisor). Analytical
modeling of an acoustic-electric transmission channel in
cylindrical coordinates with a transversely polarized trans-
ducer. Rio de Janeiro, 2023. 139p. Tese de Doutorado – Departa-
mento de Engenharia Mecânica, Pontifícia Universidade Católica
do Rio de Janeiro.

Cylindrical wave propagation in elastic materials has usually been mo-
deled with analytical approaches or with numerical methods, such as the fi-
nite element method. However, depending on the frequency, obtaining results
can be a hard task, requiring high computational efforts. Within this con-
text, some studies on acoustic energy transfer, using piezoelectric transducers,
had adopted alternative methods for modeling wave propagation, by means of
acoustic-electric channels. Among the available methods in the literature, the
two-port network approach, derived from the electric circuit analysis, proved
to be prominent. In this thesis, by using impedance analogies, this method
is brought into the context of acoustic wave propagation, leading to transfer
matrices based on transmission parameters, or the so-called ABCD parame-
ters. It was verified that the same results with less computational effort were
obtained. So far, this method was only developed for the plane wave propa-
gation in elastic solids and piezoelectric materials. However, since many real
applications are curved, the two-port network approach is extended for the
cylindrical wave case in this work. The novel ABCD parameters are then im-
plemented in a computational routine, modeling pulse-echo and pitch-catch
tests inside cylindrical media. The validation was performed by means of a
convergence analysis, varying the internal radius of the entire channel, since
the new ABCD parameters showed an inverse proportionality with the radius
of the layer. Furthermore, the developed method was capable of modeling a
signal transmission experimental setup, coming from a cylindrical transducer
submerged in a water tank, as well as modeling the transmission of the same
signal through a cylindrical barrier.

Keywords
acoustic-electric channel; two-port network method; cylindrical wave

propagation.
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Resumo

Santisteban Hidalgo, Juan Andrés; Braga, Arthur Martins Barbosa;
Kubrusly, Alan Conci. Modelagem analítica de um canal de
transmissão acústico-elétrico em coordenadas cilíndricas
com um transdutor transversalmente polarizado. Rio de Ja-
neiro, 2023. 139p. Tese de Doutorado – Departamento de Engenha-
ria Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

A modelagem da propagação de ondas cilíndricas em materiais elásticos,
tradicionalmente tem sido feita a partir de abordagens analíticas, baseadas
na teoria de propagação de ondas, ou a partir de métodos numéricos, como
o método dos elementos finitos. Contudo, dependendo da frequência, resulta-
dos numéricos transientes podem ser difíceis de serem obtidos, seja pelo custo
computacional, seja pelo tempo despendido para os cálculos. Dentro desse con-
texto, alguns trabalhos envolvendo transferência de energia por ondas acústi-
cas, utilizando-se de transdutores piezoelétricos, utilizam métodos alternativos
para modelagem. Dentre os métodos disponíveis na literatura para a modela-
gem deste tipo de problema, a abordagem de rede de duas portas, proveniente
da análise de circuitos elétricos, mostrou ser consideravelmente proeminente.
Nesta tese, utilizando analogias de impedância, o método é trazido para o con-
texto de propagação de ondas acústicas, resultando em matrizes de transfe-
rência compostas por parâmetros de transmissão, ou parâmetros ABCD, como
comumente conhecidos. De fato, resultados iguais com menos esforços compu-
tacionais são obtidos a partir desta abordagem. Até o presente momento, esse
método foi apenas desenvolvido para propagação de ondas planas em sólidos
elásticos e materiais piezoelétricos. No entanto, como grande parte das apli-
cações envolve superfícies curvas, o método neste trabalho é estendido para o
caso de ondas cilíndricas. Os novos parâmetros ABCD encontrados são então
implementados em um código computacional, modelando testes pulso-eco e
pitch-catch dentro de meios cilíndricos. A validação é feita a partir de uma
análise de convergência a partir das respostas adquiridas para diferentes valo-
res de raio interno do canal, uma vez que algumas expressões encontradas para
os parâmetros ABCD se mostraram inversamente proporcionais ao raio. Além
disso, o método desenvolvido foi capaz de modelar um teste experimental de
transmissão de sinal, a partir de um transdutor cilíndrico submerso em um
tanque com água, assim como modelar a transmissão do mesmo sinal através
de uma barreira cilíndrica.
Palavras-chave

canal acústico-elétrico; rede de duas portas; propagação de ondas
cilíndricas.
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1
Introduction

Modeling cylindrical waves propagation in elastic materials has been
traditionally performed from the exact solutions of the wave equations [1–6], as
well as using numerical methods [7,8], such as the finite element method [9,10].
However, depending on the frequency of the problem, transient numerical
results can be difficult to be obtained due to the computational costs. In
Figure 1.1, for example, one can see a very dense mesh in a cylindrical wave
propagation model associated with the high frequency of the problem.

Figure 1.1: Mesh from a finite element method wave propagation model
example.

Within this context, studies on acoustic energy transfer using piezoelec-
tric transducers, originally developed for communication purposes, have ex-
ploited alternative methods for modeling wave propagation that can be useful.
In particular, works involving a pair of piezoelectric transducers, coaxially
aligned, on opposite sides of a barrier in a so-called sandwiched configuration.
Several examples can be mentioned using this typical acoustic-electric channel
setup, which use: planar barriers [11–15]; curved barriers [16–18]; both types of
barriers [19,20]. Figure 1.2 illustrates two configurations of the acoustic energy
transfer problem using two piezoelectric transducers sandwiching a cylindrical
barrier.
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Chapter 1. Introduction 21

Figure 1.2: Acoustic energy transfer using two: (a) finite curved transducers
[16]; (b) cylindrical transducers [18].

In order to test different configurations for these structures, conveniently
varying properties and geometric characteristics, without the need for several
experiments, numerous modeling methods were developed [20]. One of these
methods is the two-port network approach, in which a relation between an
input and an output port is made by means of a transfer matrix, with
components being the network parameters, such as impedance (Z-parameters),
admittance (Y-parameters), transmission (ABCD parameters) or scattering (S-
parameters) [21]. Among them, the ABCD parameters are the most useful in
describing serial-cascaded two-port networks, since the whole channel transfer
matrix can be simply obtained by successive matrix multiplications [11,20,21].
Compared to traditional methods, as the Finite Element Method (FEM), the
two-port network approach, using ABCD parameters, can be quite efficient
to obtain the same results, concerning acoustic-electric transmission channel
problems, in less time and with less computational efforts [11, 20]. In fact,
this method applied to planar wave transmission, initially presented in [11],
proved to be highly effective to model the transmission of acoustical waves
inside elastic layers, being, for this reason, explored throughout this thesis.
However, as seen in [1–10,16–20,22] several real applications deal with curved
barriers, being, therefore, one of the motivations for the work developed in
this thesis, which is extending the two-port network method to cylindrical
wave propagation problems.

1.1
Literature Review

Studies regarding the modeling of cylindrical wave propagation in solids
have been carried out for a long time and with different motivations. The
following examples have in common the fact that they are modeled similarly
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using the wave equation for cylindrical objects, despite that some of them were
focused on guided waves. In a chronological way, some can be cited here.

In 1954, for instance, McFadden presented an approximate formulation
for the natural wavelengths associated with the free radial vibration of a thick-
walled, infinitely long, hollow cylinder. He developed solutions for the radial
extensional modes and for the thickness modes under the restriction of axial
symmetry motion. However, as pointed out by the author, validations with
exact numerical solutions were still required [1]. In 1959, Gazis developed an
analytical formulation for the propagation of free harmonic waves along the
axial direction of a hollow circular cylinder of infinite extent. The formulation
was made by means of the linear theory of elasticity, for the most general type
of harmonic wave propagation in the cylinder [2]. The study was continued
in the second part, in which the author performed comparisons between the
numerical results, obtained by calculations from the formulation developed in
part I, and the corresponding results of a shell theory [3].

In 1990, Braga et al. investigated the harmonic waves propagating in
the axial direction of a fluid-loaded, composite circular cylinder. In this case,
the three-dimensional wave propagation expressions were used as basis for
the development of a recursive algorithm for calculating surface impedance
tensors. The effect of layering and curvature on the dispersion spectrum was
also presented in the results, and discussed [4].

In 2003, Ding et al. developed a method for solving the transient response
of the axisymmetric plane-strain problem of a piezoelectric hollow cylinder
subjected to dynamic loads. They introduced a special function to conveniently
transform boundary conditions, in order to derive an integral equation that was
possible to be solved by means of interpolation methods. With this method,
numerical results were obtained, considering a suddenly constant pressure
applied on the internal surface of the piezoelectric hollow cylinder, as well
as a suddenly constant electric potential applied on the external surface [7].

In 2009, Zhou et al. presented a numerical approach for modeling
guided elastic wave propagation in the axial direction of cylindrical pipes
with local inhomogeneities. They used finite element techniques to investigate
the dispersion and scattering of waves in pipes. The numerical examples they
presented indicated that the proposed technique was effective in calculating
the dispersion relationship and the scattered field [9].

In 2013, Peng Li et al. presented an approach for simulating the transient
scalar wave propagation in plane-strain unbounded saturated porous media
[10]. In this case, the total stresses on the truncated boundaries of a numerical
model, such as the finite element model, were replaced by a set of spring,

DBD
PUC-Rio - Certificação Digital Nº 1712571/CA



Chapter 1. Introduction 23

dashpot, and mass elements, as can be seen in Figure 1.3, in order to improve
the simulation of the wave propagation in the mentioned saturated poroelastic
medium.

Figure 1.3: Wave propagation modeling in saturated soils [10].

In 2017, Li et al. studied the acoustic wave propagation, up to 50 kHz,
within a water-filled high-density polyethylene pipeline using laboratory ex-
periments and theoretical analysis. They proposed an algorithm for obtaining
wave numbers, attenuations, and mode amplitudes from the measured data.
Also, for validations, they compared the experimentally obtained dispersion
curves within the studied setup with theoretical values [5].

In 2018, Wu et al. investigated the propagation of guided waves in a
pressurized functionally graded elastomeric hollow cylinder. That is, a cylinder
made of a material characterized by the variation in composition and structure
gradually over volume. The referred cylinder was subjected to a combined
action of axial pre-stretch and pressure difference applied to the inner and outer
cylindrical surfaces. For the study, the authors analytically derived dispersion
relations for the two types of axisymmetric guided waves. Then, numerical
examples for torsional and longitudinal waves were presented and used for the
validation of the proposed approach [6].

In 2020, Bakthiari et al. investigated the propagation of stress waves
inside a fluid-filled cylindrical structure containing an internally clamped shell.
The external and internal cylinders of the studied structure were composed of
functionally graded and homogeneous isotropic materials, respectively. The
space between the shells was filled with a non-viscous and compressible fluid.
For establishing the relationship between the displacement and stress fields,
the governing equations were derived in the form of plane-strain. Laplace
transforms were used to obtain the transient responses of the studied problem.
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Finally, comparisons were made between the presented analytical approach and
previous models [8], as, for example, the results published by Ding et al. [7].

Concerning the research of efficient methods for investigating wave prop-
agation in different media for communication purposes, studies with elastic
plates sandwiched by two piezoelectric transducers, similar to the configura-
tion presented in Figure 1.2a, known as acoustic-electric transmission channels,
have been extensively exploited. In [13,16,17], for example, energy transmission
through barriers was used in order to charge batteries from electronic devices
inside nuclear storage facilities. Hu et al. [13], studied the effects of varying
physical and geometric parameters in the power transmission efficiency using
this type of system. For this purpose, an analytical model was developed, con-
sidering longitudinal wave propagation, and that the piezoelectric transmitter
was vibrating in the thickness-strain mode. On the other hand, Yang et al. [16],
also studied the transmission performance as a function of physical and geo-
metrical parameters, but, the barrier was cylindrical instead, and two finite
curved transducers were used for the transmission channel. They also investi-
gated the influence of the studied parameters in the energy-trapping region. In
fact, their work concerned the development of a theoretical formulation used to
model the system, exploiting the so-called trigonometric series solution. In [17],
the transmission channel is similar, and, as in [16], the cylinder wall was driven
into axial thickness-shear vibration, with the piezoelectric transducers polar-
ized in the axial direction. Similar work is found in [18], where the authors
sought exact solutions, based on the linear theory of piezoelasticity, for the
cylindrical wave propagation. However, two main differences can be noticed in
the latter. Firstly, the polarization direction of the piezoelectric transducer, is
radial instead of axial. Secondly, the transducers are complete hollow cylinders
instead of finite curved pieces.

In [14] and [23], the authors presented a system capable to deliver
simultaneous high-power and high data-rate transmission through solid metal
barriers using ultrasound waves. Later, in [15], a similar system that efficiently
deals with bidirectional communication links was further developed, by using
an equivalent circuit with a two-port network, using T-parameters (or ABCD
parameters), to model the channel, comparing results with experiments. In
the same work, to assess the power effectiveness of the system, a bulb lamp
was lightened by the transmitted energy. To assess the data backward transfer
circuit performance, a digital image was transferred from the receiving side to
the transmitting side.

In order to model the mentioned sandwiched structures, avoiding numer-
ous costly experiments, Lawry et al. [11] worked on developing an acoustic-
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electric transmission channel model, using the two-port network approach, by
means of ABCD parameters. As mentioned by them, high computational ef-
forts are required when using traditional approaches, such as the finite element
method, for example, mainly for applications requiring high frequencies. Thus,
they presented the ABCD parameters that properly account for the acoustic
plane wave propagation at each layer of the sandwiched structure. Chakraborty
et al. [24] studied the power and data transmission through a water layer, sand-
wiched by two steel walls. The main difference here is that a liquid was inserted
as one more propagating media. The authors also used a two-port network ap-
proach to model the transmission channel, however, pressure transfer matrices,
from an Electrical Input Pressure Output (EIPO) model developed by Wilt
in his PhD thesis [25], were used instead. All the analyses were performed in
time and frequency domains.

On the other hand, Wilt et al. [12] studied the modeling of acoustic-
electric transmission channels using pressure transfer matrices, considering
reflection coefficients between the interfaces. In fact, within their derivation,
they presented matrices for a basic layer, a spreading layer, a piezoelectric
layer and, also, relations for the material damping and losses, slightly different
to the presented in [11]. The formulation presented by them is also compatible
with the ABCD parameters.

In another work, Zaid et al. [26] studied low-power acoustic energy
transmission using air as the propagation medium, instead of metal or water.
The authors concluded that, using multiple transmitters and receivers helps
to increase the transmitted power in this condition.

In [27], the authors developed an interface model for anisotropic materials
in piezoelectric fibers disposed cylindrically in multilayers, facing isotropic
materials, in order to obtain and evaluate their dynamic response. Comparisons
with traditional interface-spring models and with finite element method were
performed. The piezoelectric element was considered with radial polarization,
aiming to be anisotropic in the plane. A meaningful contribution of this work
is the stress distribution in the anisotropic layers, in which the isotropic model
is not adequate.

In [19], Yang et al. studied the performance of an equivalent circuit
model in comparison to a 3D FEM model for transmission through a metal
barrier sandwiched by two transducers. They studied the transmission in plane
and curved barriers. The Leach equivalent circuit [28] was used in PSpice
software, for the plane case, whereas the COMSOL Multiphysics was used for
the 3D FEM simulation concerning the curved barrier. Further comparisons
with experiments were also performed.
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There are two useful, and noticeable, reviews that summarize important
topics related to the object of this thesis, namely Roes et al. [29] and Yang et
al. [20]. In [29], the authors present a review concerning the main aspects of
the acoustic energy transfer. Initially, it is mentioned the main types of con-
tactless transmission of energy, which can be by inductive coupling, capacitive
coupling, far-field electromagnetic coupling and optical coupling. In all these
types, the energy transfer relies on electromagnetic fields. On the other hand,
the acoustic energy transfer is quite different, and basically relies on acoustic
wave propagation through a medium. Many applications use acoustic energy
in its purest form, such as in ultrasonic cleaning, medical ultrasonography,
nondestructive testing, distance measurement (sonar applications), therapeu-
tic ultrasound, and ultrasonic welding. However, the cases with the closest
applications to the acoustic energy transfer system, described in Lawry’s work
for example [11], are the ones involving piezoelectric energy harvesting and
piezoelectric transformers, being the former configuration considered as a non-
driven acoustic-electric system. Concerning the advantages of using this type
of system, the wavelength is usually shorter for the acoustic transmission, com-
pared to electromagnetic-based transmission, since lower propagation speeds
in the materials are observed for a given frequency. If the transmitter and re-
ceiver dimensions are given, then the frequency required for the acoustic energy
transfer can be much lower compared to electromagnetic-based systems. With
these lower frequencies, lower losses are also observed, and the design of the
electronics can be considerably simpler as well [29]. Needless to say, acoustic
energy transfer is best suited for situations in which electromagnetic waves are
not practical. Three groups of propagating media treated in many publications
are also addressed, namely: living tissue, metal, and air. In fact, many pub-
lications are cited, concerning biomedical applications, in which this type of
energy transfer is used for charging implants, from an externally applied ul-
trasound [29]. It is also mentioned that most of these biomedical publications
deal with frequencies about 0.5 and 2.25 MHz. Situations in which it is desired
to transfer energy through metal walls are also mentioned in this work, and
some examples are cited, as can be seen in sensors for nuclear waste containers,
gas cylinders, vacuum chambers, pipelines, etc. In short, any system in which
using cables passing through the barrier is impossible could be an example.
The transmission in metal, compared to tissue or air, is of better performance
due to the good impedance match between the piezoelectric transducer and
the material (around 45 MRayl for steel and 30 MRayl for the piezoelectric
material), resulting in less reflection and higher power yield. In the same paper,
it is cited publications that point to aspects of how to model acoustic energy
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transfer systems, concerning: losses, transducers modeling, diffraction effects,
and reflections effects.

In the second review [20], the authors summarize the main methods for
modeling acoustic-electric channels and transmitting acoustic waves through
walls using piezoelectric transducers. Initially, the principles of these methods
are presented and then the applicable conditions and constraints are discussed.
Those methods are divided into: theoretical analytical method, equivalent cir-
cuit method, finite element method and two-port network based method. The
framework for these modeling methods is presented in Figure 1.4. The theoret-
ical modeling consists of using the derived mathematical model of the system
based on the acoustic wave and piezoelectric equations, combining with ap-
propriate boundary conditions at the transmitting and receiving piezoelectric
layers interfaces. On the other hand, the equivalent circuit method can be
divided into two main models, namely, Mason’s equivalent circuit [30] and
Leach’s equivalent circuit [28], being the latter more suitable for application
in a circuit simulation software. Both have the advantage, related to theo-
retical modeling, of allowing the connection of the model with elements of
circuits (diodes, capacitors, etc.), using electromechanical analogies, as well
as accounting for losses in all mechanisms. For metal barriers with complex
geometric shapes, as for example curved ones, it is preferable to use the finite
element modeling. However, the disadvantage of using this method relies on
the required accuracy of the parameters of the channel, and, depending on the
frequency, in the high computational efforts due to spatial and temporal mesh
resolution [11]. The fourth mentioned method is the two-port network, that is
based on transfer matrices, relating input and output ports, requiring much
less calculations than FEM. This method can be described with Z-parameters
(impedance), S-parameters (scattering), or ABCD parameters (transmission),
in most cases. All these sets of parameters can be converted into each other by
using a set of mathematical equations [21]. Between them, the ABCD matrix
is the best suited for modeling cascaded channels. In the same review [20], in
order to verify the validity of the modeling methods, tests with a planar metal
wall and with a cylindrical metal pipe were performed. However, only the FEM
model was suitable for the curved barrier case.
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Figure 1.4: Modeling options for the acoustic-electric transmission channel.
Adapted from [20].

There are some works in which the two-port network for acoustic-electric
channels could be useful. For example, in [31] a tool, referred as UltraSonic
Imager (USI), is described, and has application in the cement evaluation and
corrosion detection inside pipes by using ultrasonic pulses. It is analogous to
an acoustic resonance analysis, in which the echo coming from the thickness-
mode reverberation of the casing, that is, the external steel pipe covered with
cement in Figure 1.5, is analyzed. However, in order to obtain the required
parameters, by using the proposed algorithm, they assumed a simple planar
wave model. For some specifics parameters, they used corrections for non-
planar geometries, based on the semi-analytical approaches presented in [32]
and [33], for cylindrically layered structures.

Figure 1.5: Cement integrity inspection analysis.

Still, in the context of acoustic resonance tests used for investigating
characteristics of a casing cemented in a borehole, there is a patent [22], in
which the author uses a model, based on elements impedance, dealing with
planar waves propagation. However, as the layers, actually, are all curved, the
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mentioned model needs to include resistances in order to perform corrections,
due to the neglected curvatures. It is indeed mentioned that a more exact
model, based on the cylindrical geometry of the casing could be used instead.

In [34], a study based on pulse-echo analysis, from signals acquired inside
a well is presented. In this case, the effect that different materials behind
the well casing cause to the reverberations ring-downs, at the echo signals, is
studied. For this purpose, a down-scaled experimental setup was prepared, as
well as the respective 3D simulation models. The authors used a FEM software
and a Finite Difference Method (FDM) based one for the simulations. However,
only results for the FDM software were possible, because of many reported
difficulties in computational issues for running the simulations. In fact, the
complications were related to the mesh size that was very high, because of
the high frequency of the transducer (5 MHz). Indeed it can be observed that
modeling this type of problem with FEM in high frequencies can be a very
cumbersome task, which could, in turn, justify the effort for the aforementioned
two-port network analytical approach.

Thus, among the examples cited above, there is a claim for correctly
modeling acoustic-electric systems, mainly for most realistic cases, in which the
metallic barriers are curved, as mentioned in [16–19,22,27,31]. Therefore, the
development of the two-port network model, in order to account for cylindrical
wave propagation, is of interest and can lead to results obtained with less effort
and less time consumption, compared to current practices.

1.2
Objective

This thesis aims to extend the two-port network approach for acoustic-
electric transmission channels, presented initially in [11], to cylindrical coordi-
nates. The same steps taken for obtaining the ABCD parameters, related to
the plane wave propagation in piezoelectric and elastic materials, are used for
the cylindrical wave propagation. Indeed the novel parameters for the elastic
solids are similar to the encountered for the plane wave propagation case, be-
ing the presence of the radius the main difference between them. In less words,
the main objective is to reach a model that can handle cylindrical waves inside
acoustic-electric channel models efficiently, that are useful for several applica-
tions, such as, for example, the emission of cylindrical wave signals inside oil
wells for inspection purposes [22,31,34]. Other examples described through the
literature review can be cited, such as, for example, the propagation of cylin-
drical waves in saturated poroelastic media related in some ways to seismic
engineering and dynamic soil analysis [10].
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1.3
Motivation

The motivation behind this work is the search for simulation methods
giving reliable results in less time, and requiring less computational resources.
Since, traditional methods, such as the finite element method, when dealing
with high frequencies, can lead to high computational efforts.

The two-port network, applied to the acoustic-electric transmission chan-
nel model, presented in [11], proves to be a valuable choice to provide simula-
tion results in less time and with less computational costs. However, it was only
developed for plane waves propagation. Therefore, in order to address cylindri-
cal geometries, such as pipes, for instance, it is necessary to derive novel ABCD
parameters. And this can be possible with the use of the well-known theory
for cylindrical wave propagation in elastic solids brought into the context of
the two-port network approach.

1.4
Original Contribution

The main contribution of this work relies on the derivation of novel
ABCD parameters related to the cylindrical wave propagation in piezoelectric
and elastic materials. As mentioned previously, the two-port network approach,
commonly used for microwave analysis [21], can be useful for simulations with
ultrasonic wave propagation by means of acoustic-electric channels, requiring
less computational resources compared to traditional modeling methods. An-
other contribution that can be addressed is the development of novel ABCD
parameters for the plane wave propagation in transversely polarized trans-
ducers, leading to different expressions compared to the ones found for the
piezoelectric layer in Lawry’s work [11]. This development, in fact, is in line
with the presented for the cylindrical case.

1.5
Organization

This thesis is divided into six chapters. Chapter 1, is devoted to the
introduction; it presents the context in which the subject of this thesis
is inserted, and summarizes the main findings in related works. Also, the
objective of this thesis, as well as the motivation and the original contributions
are presented. Chapter 2, entitled Theoretical Background, presents most
of the required theoretical concepts for the development of the analytical
formulation used to model the wave propagation in elastic materials. The
constitutive piezoelectric equations and the impedance analogy concept are
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also presented. Chapter 3, is devoted to present the two-port network approach
for the acoustic-electric channel model, in cartesian coordinates, developed in
Lawry’s work for the planar wave propagation [11]. Also, a development of the
ABCD parameters for the transversely polarized transducer is presented. In
order to validate the approach and the implementation used herein, a Pulse-
Echo Analysis is implemented by means of a Matlab code. This was further
validated with an experiment, and the performance was compared with a FEM
simulation. Chapter 4, which is the main part of this thesis, presents the
extension of the two-port network approach for the cylindrical wave case, using
the steps presented in Chapter 3. With many manipulations, new expressions
for the ABCD parameters are obtained; Chapter 5, being devoted to the
validations, presents the results for implementing the new ABCD parameters
developed throughout the thesis in pulse-echo and pitch-catch tests. The
implementation is performed with a Matlab code, and convergence analysis
is made by varying the radius of the channel. Also, an experimental test is
presented at the end of this chapter, and the results are compared to those
obtained with the developed approach, thus complementing the validations.
Finally, Chapter 6, draws the conclusion of this thesis, and suggests future
work.
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2
Theoretical Background

2.1
Introduction

In this section, wave equations in liquids and solids are derived. Also,
the constitutive piezoelectric equations, as well as the concepts of electrical
and mechanical impedance, are presented. Then, the impedance analogy is
briefly described. The theory depicted in this chapter is the basis for the two-
port network method, applied to the acoustic-electric channel models, that is
presented throughout the thesis.

2.2
Acoustic Waves in Fluids

An inviscid fluid under a pressure field p(x, t) has its motion governed
by the Euler equation [35,36]

ρ
Dv
Dt

= −∇p, (2-1)

in which v(x, t) is the fluid velocity field, ρ(x, t) is the density field, ∇p is the
gradient of the scalar function p(x, t), and Dv/Dt is the material derivative of
v, defined as Dv

Dt
= ∂v

∂t
+ (v · ∇)v. (2-2)

The second governing equation is the mass conservation, or continuity
equation, given by [35]

∂ρ

∂t
= −∇ · (ρv), (2-3)

where the operation ∇ · [ ] indicates divergence of the argument vector.
Considering small oscillations in the fluid, one can linearize (2-2) as [36]

Dv
Dt

≈ dv
dt

. (2-4)

For the pressure p(x, t) and density ρ(x, t), one can assume that

p(x, t) = p0 + p̄(x, t), (2-5a)
ρ(x, t) = ρ0 + ρ̄(x, t), (2-5b)
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in which p0 and ρ0 are, respectively, the ambient pressure and density of the
fluid when static, and p̄(x, t) and ρ̄(x, t) are their small variations, due to
small oscillations. Substitution of (2-4), (2-5a) and (2-5b) in (2-1) and (2-3),
dropping all higher order terms, leads to the linearized governing equations for
the fluid motion as

ρ0
dv
dt

= −∇p̄, (2-6)

dρ̄

dt
= −ρ0∇ · v. (2-7)

Assuming a general relation between pressure and density, as p = p(ρ),
around the nominal density ρ0, one can write

p0 + p̄ = p(ρ0 + ρ̄),

p0 + p̄ ≈ p(ρ0) + dp

dρ

∣∣∣∣∣
ρ0

ρ̄,
(2-8)

then,
p̄ = cf

2ρ̄, (2-9)
in which

c2
f := dp

dρ

∣∣∣∣∣
ρ=ρ0

(2-10)

is a constant, and cf > 0 is the acoustic wave speed in the fluid. Substituting
(2-9) in (2-7), and differentiating the resultant equation with respect to time,
yields the linearized equation

d2p̄

dt2 = −c2
fρ0∇ · dv

dt
, (2-11)

then, using (2-6)
d2p̄

dt2 = c2
f∇ · (∇p̄), (2-12)

or
∇2p̄ − 1

c2
f

d2p̄

dt2 = 0 , (2-13)

which is the acoustic wave equation, in terms of pressure.
Assuming irrotational fluid motion [36], or ∇ × v ≡ 0, one can express

v(x, t) as
v(x, t) = ∇ϕ, (2-14)

in which ϕ(x, t) is a scalar field known as velocity potential. With this potential,
one can rewrite (2-6) as

ρ0
d(∇ϕ)

dt
= −∇p̄, (2-15)

then,
ρ0

dϕ

dt
= −p̄, (2-16)

or, using (2-9),
ρ0

dϕ

dt
= −c2

f ρ̄. (2-17)

Differentiating (2-17) with respect to time and using (2-7), one can find
that
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d2ϕ

dt2 = c2
f∇ · v = c2

f∇ · (∇ϕ), (2-18)
or

∇2ϕ − 1
c2

f

d2ϕ

dt2 = 0 , (2-19)

which is the acoustic wave equation in terms of particle velocity potential.

2.3
Waves in Elastic Solids

For an elastic media, one can apply Newton’s second law, for each
infinitesimal particle, to obtain the governing equations [37]

∇ · σ = ρ
∂2u
∂t2 , (2-20)

in which σ is the stress tensor, u(x, t) is the displacement vector, ρ is the
density, and the body forces, in this case, are neglected.

For linear elastic materials the constitutive equations are given by [37,38]

σ = c : ε, (2-21)
in which c is the constitutive fourth order elasticity tensor of the material and
ε is the strain tensor. In fact, the strain tensor is related to the displacement,
in linearized form, by [37]

[ε] = 1
2
(
[∇u] + [∇u]

)
, (2-22)

in which the underline □ means a transpose operation, in matricial calcula-
tions.

The stress and the strain tensors are of second order, however, as they
are symmetric, they can be represented as column vectors by using the Voigt
notation [37], in which the indexes equivalence is presented in Table 2.1, for
each coordinate system (x, y, z or r, θ, z).

Table 2.1: Relation between tensorial and Voigt notation.

Coordinates 1 2 3 4 5 6

Cartesian xx yy zz yz, zy xz, zx xy, yx
Cylindrical rr θθ zz θz, zθ rz, zr rθ, θr

For the strain components ε4, ε5 and ε6, it is necessary to introduce
the factor of 2 to properly carry out the conversion between the systems, as
indicated in Table 2.2 [37].
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Table 2.2: Conversion between notations for the strain components.

Coordinates ε1 ε2 ε3 ε4 ε5 ε6

Cartesian εxx εyy εzz 2εyz 2εxz 2εxy

Cylindrical εrr εθθ εzz 2εθz 2εrz 2εrθ

In an isotropic material, using symmetry considerations [37], one can
represent the fourth order constitutive tensor as a matrix (Voigt Notation) [38],
so that equation (2-21) can be written in matrix form, as:

σ1

σ2

σ3

σ4

σ5

σ6


=



λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ





ε1

ε2

ε3

ε4

ε5

ε6


, (2-23)

in which λ and µ are the first and the second Lamé coefficients, respectively,
that define the elastic properties of the isotropic material [38]. This is valid for
both Cartesian and cylindrical coordinates.

With some manipulations in equation (2-20), one can obtain, for an
isotropic material, the following Navier-Cauchy equations (with body forces
neglected) [39]

(λ + 2µ)∇(∇ · u) − µ∇ × ∇ × u = ρ
∂2u
∂t2 . (2-24)

The displacement vector u(x, t) can be decomposed, due to Helmholtz
decomposition, as [36]

u(x, t) = uL(x, t) + uT(x, t), (2-25)

such that

∇ × uL = 0, (2-26a)
∇ · uT = 0, (2-26b)

in which uL is the irrotational part of displacement, and represents the
longitudinal displacement of the continuum, and uT is a divergence-free vector
field that preserves the volume, representing the transversal component of the
displacement (shearing motion).

Manipulation of Navier-Cauchy equations (2-24), using (2-25), (2-26a)
and (2-26b), leads to the following wave equations
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∇2uL − 1
c2

L

∂2uL

∂t2 = 0 , (2-27)

and
∇2uT − 1

c2
T

∂2uT

∂t2 = 0 , (2-28)

in which
cL =

√
λ + 2µ

ρ
, (2-29)

cT =
√

µ

ρ
, (2-30)

are respectively, the longitudinal and transverse bulk wave speeds of the
material.

The displacement can also be represented in potential forms, using the
Lamé solution [40]

u(x, t) = ∇φ + ∇ ×ψ, (2-31)
where φ is the scalar potential and ψ is the vector potential. With some
manipulations, one can obtain the following wave equations in potential forms

∇2φ − 1
c2

L

∂2φ

∂t2 = 0 , (2-32)

and
∇2ψ − 1

c2
T

∂2ψ

∂t2 = 0 . (2-33)

The ratio of longitudinal and transverse wave velocities can be obtained
as a function of the Poisson coefficient, and with some algebraic manipulations,
one can obtain

cL

cT
=
√

2(1 − ν)
1 − 2ν

, (2-34)

where one can observe that the longitudinal velocity is higher than the
transverse. Figure 2.1 presents cL/cT as a function of ν.

0 0.1 0.2 0.3 0.4

0

2

4

6

8

Figure 2.1: Ratio of velocities in an isotropic elastic layer.
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2.4
Piezoelectricity

Piezoelectric materials have the characteristic of presenting an electrical
polarization under deformation (direct piezoelectric effect), and deformation
when subjected to an electric field (inverse piezoelectric effect) [37], as illus-
trated in Figure 2.2.

Figure 2.2: Piezoelectric effect scheme.

The piezoelectric effect can be explained by the appearance of electric
dipoles inside the crystalline structure of the material [37], as schematically
shown in Figure 2.3. The application of a mechanical stress, and consequently
a deformation, changes the intensity of polarization.

Figure 2.3: Piezoelectric effect due to electric dipoles.

Crystals such quartz (SiO2), when adequately cut, naturally present
the behavior [41] described in Figure 2.3, creating a dipole when strained
or deforming when an electrical field is applied. There are other examples of
materials, such as the calcium titanate (CaTiO3), or perovskite, in which the
unbalance of charges is due to changes in the ion position at the crystalline
structure, as can be seen in Figure 2.4.
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Figure 2.4: Crystalline structure of calcium titanate (CaTiO3).

Materials such as PZT (lead zirconate titanate) ceramics, present such
crystalline structures, with dipoles in random directions [41]. For this reason,
it is common to align them by the process known as poling, which consists in
applying a strong electric field close to the Curie temperature of the material
[41]. Figure 2.5 illustrates the poling process.

Figure 2.5: Alignment of electric dipoles process.

It is worth mentioning that piezoelectric materials present an anisotropic
behavior, otherwise the piezoelectric effect would not be possible [37]. For in-
stance, the PZT ceramic material can be considered as having a crystalline
structure belonging to the 6mm symmetry class, where one can see a polariza-
tion axis Z (one of the standard crystal axes X, Y and Z [37]), with isotropy
in the perpendicular plane [42], as can be seen in Figure 2.6. In fact, there are
32 possible crystalline classes, in which 11 of them are centrosymmetric, and
consequently non-piezoelectric [37].

Figure 2.6: 6mm symmetry class. (a) Point diagram; (b) 3D view. Adapted
from [37], [43].
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The governing equations for piezoelectric materials are given by the
piezoelectric constitutive relations (stress-charge form) [37]

D = ϵε · E + e : ε, (2-35a)
σ = −e · E + cE : ε, (2-35b)

in which D is the electric displacement vector, ϵ is the dielectric permittivity
second order tensor, E is the electric field vector, and e represents the piezo-
electric coupling third order tensor, with components being piezoelectric stress
constants. The superscripts ε and E were added to the dielectric permittiv-
ity tensor ϵ and to the elastic tensor c to indicate that their components are
measured under conditions of constant strain and constant electric field, re-
spectively. In fact, the main difference in these governing equations, compared
to the referred for linear elastic materials, seen in (2-21), is the presence of the
piezoelectric coupling tensor e, whose components link electrical to mechani-
cal variables. Its components are related to the piezoelectric strain constants
present at the piezoelectric third order tensor d, obtained by rearranging equa-
tion (2-35b) to

ε = d · E + sE : σ, (2-36)
in which sE = (cE)−1 is the compliance tensor of the material, and d = sE : e.

Consequently,
e = cE : d. (2-37)

In Figure 2.7, one can see, in cartesian coordinates, the physical signif-
icance for the piezoelectric strain constants, relating the applied electric field
to the strain developed (Voigt notation) [37]. For instance, the piezoelectric
constant dx2 corresponds to the coupling of the electric field component Ex

with the developed strain ε2 (or εyy). In short, the electrical field component
is given by the first index and the developed strain type by the second.

Figure 2.7: Physical significance examples for the piezoelectric strain constants.
Adapted from [37].
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2.4.1
Constitutive Piezoelectric Equations in Cartesian Coordinates

The constitutive piezoelectric equations (2-35) can be written in matrix
form by using symmetry considerations and Voigt notation, with the appropri-
ate conventions for strain and stress tensors conversion to column vectors [37].
For a 6mm crystal class, coinciding the orientation axes with the standard
crystal axes presented in Figure 2.6, one has, in Cartesian coordinates, the
following matrix equations

Dx

Dy

Dz

 =


ϵε

xx 0 0
0 ϵε

yy 0
0 0 ϵε

zz



Ex

Ey

Ez



+


0 0 0 0 ex5 0
0 0 0 ex5 0 0

ez1 ez1 ez3 0 0 0





εxx

εyy

εzz

2εyz

2εxz

2εxy


, (2-38a)



σxx

σyy

σzz

σyz

σxz

σxy


= −



0 0 ez1

0 0 ez1

0 0 ez3

0 ex5 0
ex5 0 0
0 0 0




Ex

Ey

Ez



+



cE
11 cE

12 cE
13 0 0 0

cE
12 cE

11 cE
13 0 0 0

cE
13 cE

13 cE
33 0 0 0

0 0 0 cE
44 0 0

0 0 0 0 cE
44 0

0 0 0 0 0 1
2(cE

11 − cE
12)





εxx

εyy

εzz

2εyz

2εxz

2εxy


. (2-38b)

2.4.2
Constitutive Piezoelectric Equations in Cylindrical Coordinates

In cylindrical coordinates, for a 6mm crystal class, coinciding the axial
axis z with the Z axis presented in Figure 2.6, one can find the following matrix
equations
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Dr

Dθ

Dz

 =


ϵε

xx 0 0
0 ϵε

yy 0
0 0 ϵε

zz




Er

Eθ

Ez



+


0 0 0 0 ex5 0
0 0 0 ex5 0 0

ez1 ez1 ez3 0 0 0





εrr

εθθ

εzz

2εθz

2εrz

2εrθ


, (2-39a)



σrr

σθθ

σzz

σθz

σrz

σrθ


= −



0 0 ez1

0 0 ez1

0 0 ez3

0 ex5 0
ex5 0 0
0 0 0




Er

Eθ

Ez



+



cE
11 cE

12 cE
13 0 0 0

cE
12 cE

11 cE
13 0 0 0

cE
13 cE

13 cE
33 0 0 0

0 0 0 cE
44 0 0

0 0 0 0 cE
44 0

0 0 0 0 0 1
2(cE

11 − cE
12)





εrr

εθθ

εzz

2εθz

2εrz

2εrθ


. (2-39b)

2.5
Impedance

The concept of impedance is commonly defined for electrical circuits,
in the context of harmonic inputs [44], however, it can also be defined for
mechanical systems, providing a connection between electrical and mechanical
systems [45]. There are two main analogies between these systems, namely
mobility (or admittance) and impedance analogy, both of them can be related
to each other [45]. In this thesis, expressions are developed by means of the
impedance analogy.

2.5.1
Electrical Impedance

In electrical engineering, the impedance concept is related to the op-
position that a circuit presents to an electrical current when a voltage is
applied [46]. In circuit theory, it is common to use the impedance model of
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the circuit, rather than solving its differential equation directly, to obtain the
steady-state response of any linear circuit network for a sinusoidal input volt-
age [44]. In this approach, one can effortlessly relate the response to the applied
input voltage, or current, by making use of the phasorial form, taking the ad-
vantage of the fact that the complex amplitude of the response carries sufficient
information about the solution [44]. In this context, the electrical impedance
Ze is, then, defined as

Ze(ω) = V (ω)
I(ω) , (2-40)

in which V is the voltage complex amplitude, I is the current complex
amplitude, both represented in the frequency domain, and ω is the angular
frequency of these variables in an alternating current (AC) circuit [46].

As examples, one can cite the impedance for each element of an RLC
series circuit [44], as presented in Figure 2.8. For the resistor with resistance
R, the impedance is given by

ZR = R, (2-41)
having only the real component. For the inductor with inductance L, the
impedance is given by

ZL = jωL, (2-42)
having only the imaginary component j, given by j =

√
−1. And finally, for

the capacitor with capacitance C, the impedance is then given by

ZC = 1
jωC

, (2-43)

also having only an imaginary component. The electrical impedance is mea-
sured in Ohms, and this can be also expressed in power units as

1Ω = 1V
A = 1 W

A2 . (2-44)

Figure 2.8: Schematic of an RLC series circuit.
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2.5.2
Mechanical Impedance

The mechanical impedance represents the opposition that a mechanical
system presents to motion when subjected to a harmonic force. This concept
is defined in the context of complex harmonic motion, and the definition is
given by the ratio of the force to the velocity in a mechanical system [45]. In
other words, the mechanical impedance relates the velocity of the particles of
the medium to the corresponding force required to produce that velocity [36],
that is

Zm(ω) = F (ω)
v(ω) , (2-45)

in which F and v are the force and velocity complex amplitudes, respectively.
Both are represented in the frequency domain.

The mechanical impedance, having units of force and velocity, can be
represented in power units, with some manipulations, as

1 N
(m/s) = 1 W

(m/s)2 . (2-46)

2.5.3
Impedance Analogy

In the impedance analogy, the force is considered as being analog to the
voltage, and the velocity analog to the current [45]. In this approach, some
mechanical elements can be represented with impedance expressions similar
to those obtained for the presented electrical components. For example, a
damper, or a lossy mechanical element, as the one presented in Figure 2.9,
can be considered as having a mechanical resistance Rm. This parameter is the
known damping coefficient, for viscous damping, obtained by relating damping
force to velocity [47].

Figure 2.9: Damper in the impedance analogy. Adapted from [45].

Manipulating the expression for the damping force, one can obtain the
mechanical impedance for the damper as

ZRm = Rm, (2-47)
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similar to the one obtained for the electrical circuit resistor, having, as well,
only a real component.

The mass, an element characterized by inertia, can be represented in
impedance analogy, as shown in Figure 2.10, in which only translational
movement is considered. Its representation is similar to an electrical circuit
inductor [45].

Figure 2.10: Mass in the impedance analogy. Adapted from [45].

The mechanical impedance is found by using Newton’s second law,
relating force to acceleration, that is the time-derivative of velocity. Therefore,
its mechanical impedance, considering that the mass is Lm, or a mechanical
inductance, is then given by

ZLm = jωLm, (2-48)
analog to the expression obtained for the electrical circuit inductor, presenting,
as well, only the imaginary component.

A spring, an element characterized by its resistance to an extensional
or compressional force, quantified by its stiffness constant, can rather be
represented in terms of its compliance, or mechanical capacitance Cm [45], that
is the inverse of stiffness, as can be seen in Figure 2.11. With the appropriate
manipulations in Hooke’s law [45], one can find its mechanical impedance,
given by

ZCm = 1
jωCm

, (2-49)

similar to the expression obtained for the electrical circuit capacitor, also
presenting only the imaginary component.

Figure 2.11: Spring in the impedance analogy. Adapted from [45].
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3
Acoustic-Electric Transmission Channel Model in a Cartesian
Coordinate System

3.1
Introduction

In this chapter, the acoustic-electric transmission channel model used
in this thesis is presented initially in a Cartesian coordinate system. The un-
derlying theory behind this model is developed in terms of transfer matrices,
derived from the two-port network approach, commonly known as ABCD ma-
trices, whose elements are also referred as ABCD parameters [11] (also known
as transmission parameters [20], or T-parameters [15]). In fact, this approach is
generally used in electric circuits theory, in the context of microwaves network
analysis [21], however, it has been recently used for acoustic wave propagation
problems [11,12,20,24]. Hence, here, the ABCD parameters, for the plane wave
propagation in elastic solids and piezoelectric materials, are developed and pre-
sented. Also, as a first novelty, the ABCD parameters for a transversely polar-
ized piezoelectric transducer, with respect to the wave propagation direction,
are developed and implemented in a computational code. Finally, a validation
for the analytical modeling method presented in Lawry’s work, considering a
transducer with polarization coinciding with the propagation direction [11], is
presented by means of a pulse-echo analysis. It is important to mention that
the steps herein presented for the ABCD parameters, corresponding to the
plane wave propagation, are the basis for developing the novel transmission
parameters related to the propagation of the cylindrical waves, shown in the
following chapter.

3.2
The Acoustic-Electric Transmission Channel and The Two-Port Network
Approach - ABCD Parameters

As mentioned in Chapter 1, many authors work with acoustic-electric
transmission channels, usually being composed of a metal barrier sandwiched
by two coaxially placed piezoelectric transducer disks, as can be seen in Figure
3.1. In this example, electrical energy enters through the channel input, at
the piezoelectric transmitter, and is converted into mechanical energy by
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vibration. Then, the created disturbance is propagated along the metallic
barrier reaching the opposite piezoelectric receiver, which converts the energy
back into electricity, leaving the channel at the output.

Figure 3.1: Schematic of a common acoustic-electric transmission channel in a
cross sectional view. Adapted from [11].

This acoustic-electric transmission channel can be modeled by using the
two-port network approach, illustrated in Figure 3.2, based on transfer matrices
with ABCD parameters as components. In fact, this approach is commonly
used in the microwave network analysis context, where a relation between
currents and voltages, for each circuit element, is defined by the following
matrix equation [21] V1

I1

 =
 Ā B̄

C̄ D̄

 V2

I2

. (3-1)

Figure 3.2: Two-port network ABCD parameters. Adapted from [21].

In order to bring this approach into the context of the acoustic wave, the
impedance analogy, depicted in section 2.5.3, is taken into account. As it is
possible to cascade different matrices, within this context, the mechanical force
F is considered to be analogous to the electrical voltage V , and the mechanical
particle velocity v to the electrical current I. With these associations, four
distinct electro-mechanical ABCD matrices, relating elements of port 1 and
port 2, are possible [11], and can be seen inside the following matrix equations
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F1

v1

 =
 Āmm B̄mm

C̄mm D̄mm

F2

v2

 , (3-2a)
V1

I1

 =
 Āem B̄em

C̄em D̄em

F2

v2

 , (3-2b)
F1

v1

 =
 Āme B̄me

C̄me D̄me

V2

I2

 , (3-2c)
V1

I1

 =
 Āee B̄ee

C̄ee D̄ee

V2

I2

 , (3-2d)

in which the first and second subscripts of the ABCD parameters classify the
first and the second ports, respectively, with m and e indicating when a port
is mechanical or electrical, respectively.

In Figure 3.3, another example of an acoustic-electric transmission chan-
nel is presented, in which multiple barriers are added after the piezoelectric
transmitter T, considering propagation towards the right direction. Between
the transducer and the first layer L1, there is an impedance matching layer ML,
which has a function of maximizing transmission, by having a quarter wave-
length thickness and impedance ZML =

√
ZTZL1 [35,48]. Before the transducer,

there is a backing layer with impedance Zb, that helps to model the piezoelec-
tric layer into two-port [11,49], being this process depicted in more detail in the
next sections. As reflections are present in the system, the backward traveling
waves are also taken into account.

Figure 3.3: Acoustic-electric transmission channel model with multiple layers.

In short, the main advantage of the presented approach is the fact that
one can obtain a resultant ABCD matrix of the full channel by cascading the
matrices of each layer, in sequential order. For the example above the whole
channel matrix is given by

ACH = ATAMLAL1AL2AL3 . (3-3)

In the next two sections, the ABCD parameters for either elastic and
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piezoelectric layers are derived. They were first presented in Lawry’s article
[11], and the steps to obtain them are here presented and given in more detail.
Then, with these same steps, the ABCD parameters for a transversely polarized
transducer are derived, leading to novel expressions.

3.3
Elastic Layer

An elastic layer of the channel model is represented as in Figure 3.4,
in which the wave propagation is considered as being longitudinally polarized
towards positive z direction. In port 1 one has the force F1 and velocity v1 and
in port 2 one has the force F2 and velocity v2. The layer thickness is simply
given by the difference between the faces coordinates, that is, d = z2 − z1.

Figure 3.4: Elastic layer two-port model in z direction. Adapted from [11].

As the longitudinal wave propagation is considered only in z direction,
one can use the longitudinal wave equation (2-27), in Cartesian coordinates,

∂2uz

∂z2 − 1
c2

L

∂2uz

∂t2 = 0. (3-4)

For equation (3-4), one can propose harmonic solutions as

uz(z, t) = (a1e
−γz + a2e

γz)ejωt, (3-5)

where the forward and backward traveling waves are accounted in the terms
e−γz and eγz, respectively, and j =

√
−1. Damping effect is represented by the

complex propagation constant γ, and it depends on the attenuation coefficient
α and the wavenumber κ = ω/cL, as follows

γ = α + jκ. (3-6)

The terms a1 and a2 can be found by the boundary conditions, imposed
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in each side of the layer, namely

∂uz

∂t
(0) = v1, (3-7a)

∂uz

∂t
(d) = v2. (3-7b)

Differentiation of equation (3-5) with respect to time, leads to

∂uz

∂t
= jω(a1e

−γz + a2e
γz)ejωt. (3-8)

Substitution of the boundary conditions (3-7) in (3-8) leads to

∂uz

∂t
(0) = jω(a1 + a2)ejωt = v1, (3-9a)

∂uz

∂t
(d) = jω(a1e

−γd + a2e
γd)ejωt = v2. (3-9b)

Solving the algebraic system for (3-9a) and (3-9b) leads to

a1 = − 1
jω

v1e
γd − v2

e−γd − eγd
e−jωt, (3-10a)

a2 = 1
jω

v1e
−γd − v2

e−γd − eγd
e−jωt. (3-10b)

Substitution of (3-10) in equation (3-5) yields

uz(z) = −(v1e
γd − v2)e−γz + (v1e

−γd − v2)eγz

jω(e−γd − eγd)
. (3-11)

The force continuity boundary conditions at the faces of the elastic layer
can be related to the stress in the following manner

σzz(0) = F1

A
, (3-12a)

σzz(d) = F2

A
, (3-12b)

in which A is the layer’s cross-sectional area.
Using equation (2-23), from section 2.3, for an isotropic medium, the

boundary conditions (3-12a) and (3-12b), yields

σzz = λ���*0
εxx + λ��*0εyy + (λ + 2µ)εzz

= (λ + 2µ)εzz

= c33εzz,

(3-13)

assuming that there are no variations in x and y directions. Therefore, one can
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rewrite the boundary conditions (3-12a) and (3-12b) as

σzz(0) = c33εzz(0) = c33
∂uz

∂z

∣∣∣
z=0

= F1

A
, (3-14a)

σzz(d) = c33εzz(0) = c33
∂uz

∂z

∣∣∣
z=d

= F2

A
. (3-14b)

The derivative of uz relative to z is given by

∂uz

∂z
(z) =

γ
[
(v1e

γd − v2)e−γz + (v1e
−γd − v2)eγz

]
jω(e−γd − eγd)

. (3-15)

At z = 0, one can find

F1 =
Ac33γ

[
v1e

γd − v2 + v1e
−γd − v2

]
jω(e−γd − eγd)

=
−Ac33γ

[
(eγd + e−γd)v1 − 2v2

]
jω(eγd − e−γd)

= −Ac33γ

jω
coth (γd)v1 + Ac33γ

jω
csch (γd)v2,

(3-16)

where
coth (γd) = eγd + e−γd

eγd − e−γd
, (3-17)

and
csch (γd) = 2

eγd − e−γd
. (3-18)

At z = d, one can find

F2 =
Ac33γ

[
v1 − v2e

−γd + v1 − v2e
γd
]

jω(e−γd − eγd)

=
−Ac33γ

[
2v1 − (eγd + e−γd)v2

]
jω(eγd − e−γd)

= −Ac33γ

jω
csch (γd)v1 + Ac33γ

jω
coth (γd)v2.

(3-19)

The term Ac33γ
jω

that arises in (3-16) and (3-19), can be related to the
mechanical impedance, using (3-6), in the following manner

Ac33

jω
γ = Ac33

jω
(α + jκ) = α

Ac33

jω
+ Ac33κ

ω

= −αAc33

κcL
j + Ac33

cL

= −αAρcL

κ
j + AρcL

= AρcL − AρcL
α

κ
j,

(3-20)

where,
Z = Ac33

jω
γ = AρcL

(
1 − j

α

κ

)
(3-21)
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is the complex acoustic impedance. It is also possible to see that a value of
α = 0 (no attenuation), dividing the result by the area of the load, leads to
the well-known specific acoustic impedance of the medium Zac = ρcL [35, 50].
In fact, the specific acoustic impedance is multiplied here by the area because
the mechanical port in the impedance analogy is referred to force instead of
pressure. Thus, in this way, mechanical impedance, defined in section 2.5.2, and
electrical impedance, defined in section 2.5.1, can be related to each other. It
is worth mentioning that the imaginary part of equation (3-21) can be seen,
in the context of the impedance analogy [45], as acting similar to an electrical
capacitor in the system, due to the presence of the material stiffness by c33,
that is,

Zα = −jAρcL
α

κ

= Aρc2
Lα

jω

= Aαc33

jω

= 1
jωCeq

,

(3-22)

in which, the equivalent capacitance term Ceq is the compliance, or the inverse
of stiffness, represented by 1/Ceq = Aαc33.

Thus, equations (3-16) and (3-19) can be rewritten as

F1 = −Z coth (γd)v1 + Z csch (γd)v2, (3-23)

F2 = −Z csch (γd)v1 + Z coth (γd)v2. (3-24)
Rearranging (3-23) and (3-24), choosing as independent variables the quantities
of port 2, one can find

v1 = Z−1 sinh (γd)F2 + cosh (γd)v2, (3-25)

F1 = cosh (γd)F2 + Z sinh (γd)v2. (3-26)
Writing in the two-port configuration [21], one can find the matrix

equation F1

v1

 =
 cosh (γd) Z sinh (γd)

Z−1 sinh (γd) cosh (γd)

F2

v2

 . (3-27)

Consequently, the ABCD matrix associated with the elastic layer is given by

Aelas =
 cosh (γd) Z sinh (γd)

Z−1 sinh (γd) cosh (γd)

. (3-28)
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3.3.1
Diffraction Losses

At this point, it is important to mention that the approach for the elastic
layer can be better improved with the presence of a diffractive loss factor, as
mentioned by Lawry in his article [11]. In fact, a diffractive effect is observed
when the wave propagates from the transducer that generates the acoustic
wave to the subsequent elastic non-piezoelectric medium since its surface area
is generally greater than the cross-sectional area A of the referred transducer.
Therefore, the diffractive loss factor is related to the fraction of the wavefronts
propagating at non-normal angles relative to the input interface [11]. According
to [51], this diffractive loss factor can be given by

ld ≈
1 − { [2−η2]J0(ζ)

2 + j [2ζ−(ζ+2)η2]J1(ζ)
2ζ

}e−jζ

1 − ηJ1(2ζ/η)
ζ

, (3-29)

where J0(·) and J1(·) are Bessel functions of the first kind, being zeroth-order
and first order, respectively, and ζ is

ζ = κ

2
(√

d2 + 4r2 − d
)

, (3-30)

while η is
η = ζ

κr
= 1

2r

(√
d2 + 4r2 − d

)
. (3-31)

In the above expressions, r is the radius of the circular cross-sectional area
of the transducer that generates the acoustic waves [11]. Here, it is important
to point out that these expressions only hold for transducers with circular
cross-sectional areas.

Thus, a diffractive attenuation coefficient αd, which can be embedded in
the complex propagation constant γ, can be calculated with the diffractive loss
factor by [11]

αd = − ln(ld)
d

. (3-32)
The effective attenuation coefficient, including both frictional and diffractive
losses, denoted α′, can be calculated as [11]

α′ = α + αd, (3-33)

and the complex propagation constant of (3-6) can be updated to

γ′ = α′ + jκ. (3-34)

Therefore, the complex propagation constant γ of the ABCD parameters
at (3-28) can be replaced by γ′ from (3-34) for better modeling the acoustic
wave propagation in the elastic layer.
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3.4
Piezoelectric Layer

The piezoelectric layer, from Lawry’s model [11], has a slight difference
when compared to the elastic layer presented previously, as can be observed in
Figure 3.5. In this case, a third electrical port with the voltage V3 and current I3

exists. In order to reach a two-port component, a constant acoustic impedance,
Zb, is inserted on port 1. This boundary condition corresponds to the backing
layer, normally coupled before the piezoelectric transducers in order to prevent
the internal ringing, being a high attenuative material, as rubber or epoxy [49].
In some cases, the transducer vibrates freely, considering the impedance Zb the
value for the acoustic impedance of air. The following development is performed
assuming that the transducer acts like a transmitter, with the input being
electrical and the output mechanical, leading to a disturbance propagated
towards the positive z direction. The direction of current I3 and velocity v2

indicates this condition.

Figure 3.5: Piezoelectric layer three-port model in z direction. Adapted from
[11].

The governing equations are represented by the piezoelectric constitutive
expressions (2-35), presented in section 2.4. These expressions are written
in matrix form, in cartesian coordinates and considering a 6mm symmetry
class, in (2-38a) and (2-38b). Considering that the voltage polarization and
the displacement of the particles are both exclusively in z direction, one can
therefore obtain

Dz = ϵε
zzEz + ez1���*0

εxx + ez1��*0εyy + ez3εzz

= ϵε
zzEz + ez3εzz,

(3-35)

σzz = −ez3Ez + cE
13���*0

εxx + cE
13��*0εyy + cE

33εzz

= −ez3Ez + cE
33εzz.

(3-36)

Defining the transducer’s piezoelectric deformation coefficient as
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h33 = ez3

ϵε
zz

, (3-37)

and the transducer’s impermittivity as measured under constant strain as

βε
33

ε = (ϵε
zz)−1, (3-38)

one can rearrange equations (3-35) and (3-36), making use of algebraic manip-
ulations, to find

Ez = βε
33Dz − h33εzz, (3-39a)

σzz = −h33Dz + cD
33εzz, (3-39b)

where
cD

33 = cE
33 + e2

z3
ϵε

zz

, (3-40)

is the transducer’s elastic stiffness constant in the thickness dimension as
measured under constant electric displacement.

Using Newton’s second law to find the wave equation, neglecting body
forces, one can obtain from (2-20) that

∂σzz

∂z
= ρ

∂2uz

∂t2 . (3-41)

Differentiation of (3-39b) with respect to z, and considering no variation of
electric displacement Dz in z direction, leads to

∂σzz

∂z
= −h33

�
�
���

0
∂Dz

∂z
+ cD

33
∂εzz

∂z

= cD
33

∂2uz

∂z2 .

(3-42)

Consequently, with (3-41) and (3-42) one can find the wave equation for
this layer

cD
33

∂2uz

∂z2 = ρ
∂2uz

∂t2 , (3-43)
or ∂2uz

∂z2 − 1
c2

L

∂2uz

∂t2 = 0, (3-44)

where the longitudinal wave speed in the medium is given by

cL =

√√√√cD
33
ρ

. (3-45)

One can notice that this expression is similar to the corresponding one
for elastic layers [37], with the main difference given by the presence of a
piezoelectric component within the elastic stiffness constant, as can be seen in
(3-40).

For the wave equation (3-44), one can assume the same harmonic
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solutions proposed for the elastic layer in (3-5). With the same velocity
boundary conditions (3-7) in these faces, one can find the same expression
for uz(z), as in (3-11), and find its derivative in relation to z, as in (3-15). The
main difference comes when using the force boundary conditions at the faces,
as in (3-12), due to the addition of the electrical displacement Dz term, as can
be seen in (3-39b). At z = 0, applying the force boundary condition (3-12a) in
(3-39b), using (3-15), one has

σzz(0) = −h33Dz + cD
33

γ[(v1e
γd − v2) + (v1e

−γd − v2)]
jω(e−γd − eγd) = F1

A
. (3-46)

At z = d, applying the force boundary condition (3-12b) in (3-39b), using
(3-15), one has

σzz(d) = −h33Dz + cD
33

γ[(v1e
γd − v2)e−γd + (v1e

−γd − v2)eγd]
jω(e−γd − eγd) = F2

A
. (3-47)

The electric displacement Dz can be assumed as being harmonic:

Dz(t) = D0e
jωt. (3-48)

For equations (3-46) and (3-47), one can find a dependency with the
current I3 using Gauss’ law [49]

I3 = d

dt
(DzA) = d

dt
(D0e

jωtA) = jωAD0e
jωt = jωADz, (3-49)

and consequently, they turn into

F1

A
= −h33I3

jωA
+ cD

33
γ
[
(eγd + e−γd)v1 − 2v2

]
jω(e−γd − eγd) , (3-50a)

F2

A
= −h33I3

jωA
+ cD

33
γ
[
2v1 − (e−γd + eγd)v2

]
jω(e−γd − eγd) . (3-50b)

Rearranging (3-50) in terms of v1, v2 and I3, leads to

F1 = −γcD
33A(eγd + e−γd)

jω(eγd − e−γd) v1 + 2γcD
33A

jω(eγd − e−γd)v2 − h33

jω
I3, (3-51a)

F2 = − 2γcD
33A

jω(eγd − e−γd)v1 + γcD
33A(e−γd + eγd)

jω(eγd − e−γd) v2 − h33

jω
I3. (3-51b)

At this stage, to solve the system in (3-51), it is necessary one more
equation which is obtained by integrating the electric field between z = 0 and
z = d, by [49]

V3 =
∫ d

0
Ezdz. (3-52)

From equation (3-39a), one can, with some manipulations, find that
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Ez = βε
33

jωA
I3 − h33

γ
[
(v1e

γd − v2)e−γz + (v1e
−γd − v2)eγz

]
jω(e−γd − eγd)

. (3-53)

Therefore, equation (3-52) can be rewritten as

V3 =
∫ d

0

−
h33γ

[
(v1e

γd − v2)e−γz + (v1e
−γd − v2)eγz

]
jω(e−γd − eγd) + βε

33
jωA

I3

 dz

=
[

h33(v1e
γd − v2)

jω(e−γd − eγd) e−γz

]d

0
−
[

h33(v1e
−γd − v2)

jω(e−γd − eγd) eγz

]d

0
+
[

βε
33I3

jωA
z

]d

0

=h33(v1e
γd − v2)

jω(e−γd − eγd) (e−γd − 1) − h33(v1e
−γd − v2)

jω(e−γd − eγd) (eγd − 1) + βε
33d

jωA
I3

=���h33v1 − h33v2e
−γd − h33v1e

γd +���h33v2

jω(e−γd − eγd)

+ −���h33v1 + h33v2e
γd + h33v1e

−γd −���h33v2

jω(e−γd − eγd) + βε
33d

jωA
I3

=h33�������(e−γd − eγd)
jω�������(e−γd − eγd)

v1 − h33�������(e−γd − eγd)
jω�������(e−γd − eγd)

v2 + βε
33d

jωA
I3

=h33

jω
v1 − h33

jω
v2 + βε

33d

jωA
I3.

(3-54)

Thus, from (3-51) and (3-54), using (3-17), (3-18) and (3-21), one, finally,
has

F1 = −Z coth (γd)v1 + Z csch (γd)v2 − h33

jω
I3, (3-55a)

F2 = −Z csch (γd)v1 + Z coth (γd)v2 − h33

jω
I3, (3-55b)

V3 = h33

jω
v1 − h33

jω
v2 + 1

jωC0
I3, (3-55c)

in which one uses the fact that the clamped capacitance C0 (zero-strain) is
defined as

C0 = ϵε
zzA

d
. (3-56)

Therefore, equations (3-55) can be rewritten in terms of three-port network
model [21] in matrix form as [11]

F1

F2

V3

 =


−Z coth (γd) Z csch (γd) −h33

jω

−Z csch (γd) Z coth (γd) −h33
jω

h33
jω

−h33
jω

1
jωC0



v1

v2

I3

. (3-57)

Choosing F2 as an independent variable, equations (3-55) can be rewrit-
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ten as

F1 = − cosh (γd)F2 − Z sinh (γd)v2 + h33 [cosh (γd) − 1]
jω

I3, (3-58a)

v1 = −Z−1 sinh (γd)F2 + cosh (γd)v2 − Z−1h33 sinh (γd)
jω

I3, (3-58b)

V3 = Z−1h33

jω
sinh (γd)F2 + h33

jω
[cosh (γd) − 1] v2

+ h33

jω

[
−Z−1h33

jω
sinh (γd) + 1

h33C0

]
I3. (3-58c)

To condense the expressions, in order to find a two-port configuration, one
has to use the acoustic impedance Zb boundary condition, corresponding to
the backing layer of the piezoelectric transducer, mentioned and presented in
Figure 3.5. The presence of this impedance introduces the following relation
between F1 and v1, given by

F1 = −v1Zb. (3-59)

Then, with some algebraic manipulations, one can find that

V3 = ĀPTF2 + B̄PTv2, (3-60a)
I3 = C̄PTF2 + D̄PTv2, (3-60b)

in which [11],

ĀPT = − j
h33

ωZ

Z tanh (γd)
Z [sech (γd) − 1] − Zb tanh (γd)

− 1
h33C0

Z + Zb tanh (γd)
Z [sech (γd) − 1] − Zb tanh (γd) , (3-61a)

B̄PT = j
h33

ω

2Z [sech (γd) − 1] − Zb tanh (γd)
Z [sech (γd) − 1] − Zb tanh (γd)

− Z

h33C0

Z tanh (γd) + Zb

Z [sech (γd) − 1] − Zb tanh (γd) , (3-61b)

C̄PT = − j
ω

h33

Z + Zb tanh (γd)
Z(sech (γd) − 1) − Zb tanh (γd) , (3-61c)

D̄PT = − j
ωZ

h33

Z tanh (γd) + Zb

Z(sech (γd) − 1) − Zb tanh (γd) , (3-61d)

and the subscript PT means piezoelectric layer in the transmitter configuration.
In the two-port configuration, equations (3-60) can be rewritten matri-

cially as V3

I3

 =
 ĀPT B̄PT

C̄PT D̄PT

 F2

v2

 , (3-62)

and one can notice, at this point, that port 1 is electrical, with inputs V3 and
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I3, and port 2 is mechanical, with outputs F2 and v2. Hence, the ABCD matrix
associated with the piezoelectric layer, when acting as a transmitter, is then

APT =
 ĀPT B̄PT

C̄PT D̄PT

. (3-63)

When the transducer is in a receiving configuration, the ports are then
inverted, that is, port 1 is mechanical, and port 2 is electrical. This situation
can be reached by simply inverting the direction of current I3 and velocity v2

in Figure 3.5. So, the ABCD matrix for this configuration is then given by [11]

APR =
 ĀPR B̄PR

C̄PR D̄PR

 =
 D̄PT B̄PT

C̄PT ĀPT

 , (3-64)

where the subscript PR means a piezoelectric layer in the receiving configura-
tion.

It is worth mentioning that the ABCD parameters found for the piezo-
electric layer, as well as for the elastic layer, are useful parameters for the
two-port network analysis in frequency domain. In fact, one can notice from
equation (3-11) that the time dependence has dropped since the boundary
conditions (3-7) were applied.

Another important point to mention is that, through adequate conver-
sions, which can be found in more detail in tables present in [21], one can obtain
other useful parameters, and as a consequence, other matrix descriptions of the
same network. For instance, the impedance and admittance matrices [Z] and
[Y], respectively, relating voltages and currents at two different ports, and the
scattering matrix [S], which relates incident and reflected voltage waves from
the ports, giving reflection and transmission coefficients [21].

So far, the aforementioned expressions for the ABCD parameters were
presented for the first time by Lawry in 2012 [11], being a starting point for
using the two-port network analysis in the acoustic wave propagation context.
However, different expressions for the piezoelectric transducer can be found
when considering a transversal electric polarization compared to the wave
propagation direction.

3.4.1
Piezoelectric Layer with Transversal Polarization

In this section, the ABCD parameters for a piezoelectric transducer with
a transversal electric polarization, with respect to the wave propagation direc-
tion, are derived. This means that the electrical field is applied transversely
to the vibration direction. In Figure 3.6, for instance, the electrical field is
applied in the z direction, through the polarization area Ã, while the vibration
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occurs in the x direction, through the cross-sectional area of the channel A.
In this case, the transducer modeled has a paving stone form. This choice was
made due to the required comparisons with the cylindrical model developed in
the following chapter. Concerning applications of the present approach, it can
be mentioned the usefulness for modeling transducers applied as actuators or
energy harvesters, in a configuration known as D31-mode [52].

Figure 3.6: Piezoelectric layer configuration.

Similar to section 3.4, the transducer is initially modeled as a three-port
network. However, the third port, with the voltage V3 and current I3, is placed
along the transversal direction, with respect to the displacement direction x,
as can be seen in Figure 3.7. To reach the two-port configuration, a constant
acoustic impedance, Zb, boundary condition corresponding to the backing layer
of the piezoelectric transducer, is used in port 1. As mentioned in section 3.4,
the backing layer imposes a relation between force and velocity in this port
and plays the role of air or any material, usually with high attenuation, placed
at the back face of the transducer.

Figure 3.7: Piezoelectric layer three-port model.

To use the force boundary conditions, one has to use the stress σxx, which
in turn can be found by using the piezoelectric constitutive equations (2-35).
Thus, neglecting variations in y and z directions, from (2-38a) and (2-38b),
one has the following expressions
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Dz = ϵε
zzEz + ez1εxx, (3-65)

σxx = −ez1Ez + cE
11εxx, (3-66)

where ez1 is the piezoelectric coupling constant between z and x directions, Ez

is the electric field in z direction, cE
11 is the elastic stiffness constant related to

σxx measured in a constant electric field E, εxx is the strain in x, Dz is the
electrical displacement in z direction, and ϵε

zz is the dielectric constant in z

direction, measured under a constant strain ε. Here, one can notice that the
transversal polarization is accomplished by the ez1 term, inside the expression
for Dz, being the main difference from what was presented in section 3.4.

With some manipulations in equation (3-65), one can obtain the following
expression for the electric displacement

Ez = βε
33Dz − ez1β

ε
33

∂ux

∂x
, (3-67)

where βε
33 = (ϵε

zz)−1, which is the same as the defined in (3-38).
Thus, using (3-67) in (3-66), one can find the stress σxx as being

σxx = −ez1β
ε
33Dz + cD

11
∂ux

∂x
, (3-68)

where
cD

11 = cE
11 + e2

z1β
ε
33, (3-69)

being also referred to as the transducer’s elastic stiffness constant in the thick-
ness dimension as measured under constant electric displacement, similarly to
the presented in [11]. At this point, one can observe that the elastic stiffness
constant is linked to the piezoelectric coupling constant ez1, which relates the
applied electric field, in z direction, to the experimented strain in the wave
propagation direction x.

Therefore, using (3-68) in (2-20), at Newton’s second law, and regarding
that Dz does not vary with x, one can find the wave equation

∂2ux

∂t2 = c2
L

∂2ux

∂x2 , (3-70)

where
cL =

√√√√cD
11
ρ

, (3-71)

being the longitudinal wave speed, using the elastic stiffness constant cD
11. Here,

one can notice that this elastic constant contains the piezoelectric coupling
constant ez1, as seen in equation (3-69).

Similar to section 3.4, harmonic wave solutions can be proposed for
equation (3-70) as

ux(x, t) = (a1e
−γx + a2e

γx)ejωt, (3-72)
where the forward and backward traveling waves are accounted for in the terms
e−γx and eγx, respectively. The damping effect is represented by the complex
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propagation constant γ, and depends on the attenuation coefficient α and the
wavenumber. In fact, this propagation constant is similar to the depicted in
equation (3-6), from section 3.3.

The velocity boundary conditions

∂ux

∂t
(0) = v1, (3-73a)

∂ux

∂t
(d) = v2, (3-73b)

can be used to find a1 and a2. Therefore, with some manipulations using
equations (3-73a) and (3-73b), equation (3-72) can be rewritten as

ux(x) = −(v1e
γd − v2)e−γx + (v1e

−γd − v2)eγx

jω(e−γd − eγd)
. (3-74)

The strain εxx can then be found, in the linearized form, as

εxx = ∂ux

∂x
(x) =

γ
[
(v1e

γd − v2)e−γx + (v1e
−γd − v2)eγx

]
jω(e−γd − eγd) . (3-75)

The electric displacement can be assumed as harmonic:

Dz = D0e
jωt, (3-76)

and, a relation with the current I3 can be found using the Gauss’ law [49]

I3 = d

dt
(DzÃ) = d

dt
(D0e

jωtÃ) = jωÃD0e
jωt = jωÃDz, (3-77)

where Ã is the polarization area of the piezoelectric transducer, presented in
Figure 3.6. In fact, the □̃ is placed above A in order to avoid confusion with
the cross-sectional area A of the channel, defined for the propagation direction.

The force boundary conditions

σxx(0) = F1

A
, (3-78a)

σxx(d) = F2

A
, (3-78b)

can be used to find the two expressions for the forces F1 and F2. Therefore,
with the aid of equations (3-68), (3-75) and (3-77), one can obtain

F1 = −Z(eγd + e−γd)
eγd − e−γd

v1 + 2Z

eγd − e−γd
v2 − 1

δpz

ez1β
ε
33

jω
I3, (3-79a)

F2 = − 2Z

eγd − e−γd
v1 + Z(eγd + e−γd)

eγd − e−γd
v2 − 1

δpz

ez1β
ε
33

jω
I3, (3-79b)

where
Z = AcD

11γ

jω
, (3-80)
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that is, the complex acoustic impedance, and

δpz = Ã

A
, (3-81)

or the ratio between the cross-sectional areas presented in Figure 3.6.
The third equation for solving the algebraic system is found by integrat-

ing the electric field through the height dv of the piezoelectric transducer, thus
being

V3 =
∫ dv

0
Ezdz = Ezdv, (3-82)

since Ez does not vary with z, as can be seen from (3-67) and (3-76). Since
Ez is given by the expression presented in (3-67), one can, using (3-75) and
(3-77), obtain from (3-82) that

V3 = βε
33dv

jωÃ
I3 − ez1β

ε
33dv

γ[(v1e
γd − v2)e−γx + (v1e

−γd − v2)eγx]
jω(e−γd − eγd) . (3-83)

With some algebraic manipulations, one can then find that

V3 = ez1β
ε
33

jω
Ξ1(x)v1 − ez1β

ε
33

jω
Ξ2(x)v2 + 1

jωC0
I3, (3-84)

where
Ξ1(x) = eγ(d−x) + e−γ(d−x)

eγd − e−γd
γdv,

Ξ2(x) = e−γx + eγx

eγd − e−γd
γdv,

(3-85)

and
C0 = ϵε

zzÃ

dv
, (3-86)

is the clamped capacitance (zero-strain) at the polarization area normal
direction.

Thus, with equations (3-79a), (3-79b) and (3-84) one can describe the
three-port system in the matrix form as

F1

F2

V3

 =


−Z coth (γd) Z csch (γd) − 1

δpz

ez1βε
33

jω

−Z csch (γd) Z coth (γd) − 1
δpz

ez1βε
33

jω
ez1βε

33
jω

Ξ1(x) − ez1βε
33

jω
Ξ2(x) 1

jωC0



v1

v2

I3

. (3-87)

Choosing F2 as an independent variable, equations (3-79a), (3-79b) and
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(3-84) can be rewritten as

F1 = − cosh (γd)F2 − Z sinh (γd)v2 + 1
δpz

ez1β
ε
33

jω
[cosh (γd) − 1] I3 (3-88a)

v1 = −Z−1 sinh (γd)F2 + cosh (γd)v2 − Z−1

δpz

ez1β
ε
33

jω
sinh (γd)I3, (3-88b)

V3 = Z−1 ez1β
ε
33

jω
Ξ1(x) sinh (γd)F2

+ ez1β
ε
33

jω
[Ξ1(x) cosh (γd) − Ξ2(x)] v2,

+ ez1β
ε
33

jω

[
−Z−1

δpz

ez1β
ε
33

jω
sinh (γd) + 1

ez1βε
33C0

]
I3. (3-88c)

Similarly to [11], the two-port form is then obtained by using the impedance
Zb, with the relation F1 = −v1Zb. Thus, one can use this expression along with
(3-88a) in (3-88b) to find(

− 1
Zb

){
− cosh (γd)F2 − Z sinh (γd)v2 + 1

δpz

ez1β
ε
33

jω
[cosh (γd) − 1]I3

}

= −Z−1 sinh (γd)F2 + cosh (γd)v2 − Z−1

δpz

ez1β
ε
33

jω
sinh (γd)I3

(3-89)
With many rearrangements, one can find that

I3 = − jω

ez1βε
33

δpz
[Z + Zb tanh (γd)]

[Z(sech (γd) − 1) − Zb tanh (γd)]F2

− jωZ

ez1βε
33

δpz
[Z tanh (γd) + Zb]

[Z(sech (γd) − 1) − Zb tanh (γd)]v2,

(3-90)

in where the parameters C̄PT and D̄PT can be identified. Substitution of (3-90)
in (3-88c) leads, with several algebraic manipulations, to a new expression for
V3, as a function of F2 and v2, in such a form that the parameters ĀPT and
B̄PT can be found.

Therefore, the ABCD parameters for the referred piezoelectric layer with

DBD
PUC-Rio - Certificação Digital Nº 1712571/CA



Chapter 3. Acoustic-Electric Transmission Channel Model in a Cartesian
Coordinate System 64

a transversal polarization are then given by

ĀPT = − j
ez1β

ε
33

ωZ
Ξ1(x) Z tanh (γd)

Z [sech (γd) − 1] − Zb tanh (γd)

− δpz

ez1βε
33C0

Z + Zb tanh (γd)
Z [sech (γd) − 1] − Zb tanh (γd) , (3-91a)

B̄PT = j
ez1β

ε
33

ω

Z[Ξ1(x) + Ξ2(x)] [sech (γd) − 1] − Ξ2(x)Zb tanh (γd)
Z [sech (γd) − 1] − Zb tanh (γd)

− δpzZ

ez1βε
33C0

Z tanh (γd) + Zb

Z [sech (γd) − 1] − Zb tanh (γd) , (3-91b)

C̄PT = − j
δpzω

ez1βε
33

Z + Zb tanh (γd)
Z(sech (γd) − 1) − Zb tanh (γd) , (3-91c)

D̄PT = − j
δpzωZ

ez1βε
33

Z tanh (γd) + Zb

Z(sech (γd) − 1) − Zb tanh (γd) , (3-91d)

in which the subscript PT means that the piezoelectric layer is in the transmit-
ter configuration. For obtaining the receiving configuration, the same inversion
process of the corresponding ABCD matrix, depicted in equation (3-64), ap-
plies.

Concerning the above ABCD parameters, one can notice that the expres-
sions are, in a sense, similar to those obtained for the case where the transducer
has coincident polarization and wave propagation direction, as those presented
in [11]. Mainly when one looks at the grouped impedance terms. One remark-
able difference that can be mentioned relies on the presence of the term ez1,
which relates the displacement in x with the applied electric field in z.

Another point that is worth mentioning is that if the generation of acous-
tic waves in the elastic layers is carried out with this type of transducer, the
diffractive expressions presented in section 3.3.1 are no longer appropriate.
This is because the diffraction model proposed in [51] only considered trans-
ducers with circular cross-sectional areas. Therefore, the application of the
ABCD parameters found for this type of piezoelectric layer in this thesis is
made without the presence of the diffractive attenuation effect in the elastic
layers.

3.4.2
Losses in the Piezoelectric Layer

Unlike the non-piezoelectric elastic layers, the loss mechanisms in the
piezoelectric material are inserted in a different manner. In this section, only
the losses for the piezoelectric transducer presented in section 3.4, that is, not
transversely polarized, are presented. The common hysteretic behavior found
in piezoelectric materials, responsible for the energy losses in the system, is
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taken into account by setting α to 0 in γ, from (3-6), and adding a complex
loss tangent into the three constants of the constitutive equations (3-39) [11],
that is,

β̃ε
33 ≈ βε

33(1 + jtan δ), (3-92a)
c̃D

33 ≈ cD
33(1 + jtan ϕ), (3-92b)

h̃33 ≈ h33(1 + jtan θ), (3-92c)

in which tan δ is the dielectric loss tangent of the material; tan ϕ and tan θ,
despite not being usual material properties directly, they represent the elastic
and piezoelectric losses in the system, respectively. Another important point
to mention is that the approximations in (3-92) are accurate when the value
of each loss tangent is significantly less than unit [11].

The referred tangent losses are not independent and can be related to
each other by [11]

tan ϕ = 1 − k2
t

k2
t

Q−1 − 1
k2

t

tan δ + 2 tan θ, (3-93)

where Q is the mechanical quality factor of the piezoelectric material, and kt is
the piezoelectric material’s lossless electromechanical coupling factor, obtained
by

kt = h33√
cD

33β
ε
33

. (3-94)

For the sake of modeling, in practice, the following constants are replaced
by their complex equivalents,

γ̃ ≈ γ
(

1 − j
1
2 tan ϕ

)
, (3-95a)

Z̃ ≈ Z
(

1 + j
1
2 tan ϕ

)
, (3-95b)

C̃0 ≈ C0(1 − j tan δ), (3-95c)

at the ABCD parameters found for the piezoelectric layer. These complex
constants are derived from the insertion of the loss tangents at (3-92).

3.5
Conversion to Time Domain

From the expressions for the ABCD parameters, concerning piezoelectric
and non-piezoelectric layers, one can observe that, all the analyses, so far,
are in the frequency domain. Furthermore, the acoustic-electric transmission
channel problem, described in section 3.2, usually runs into a situation in which
an input signal is given to the system, which in turn is transformed into an
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output signal, by the transform process illustrated in Figure 3.8. In this case,
the input is represented by X(ω) and the output by Y (ω), whereas the system
transfer function is represented by G(ω). In fact, each element of this system
is the Fourier transform of the corresponding one in the time domain. The
system transfer function G(ω) is, indeed, related to the ABCD parameters of
the system, found with the cascading process described in section 3.2.

Figure 3.8: Signal transform process.

The aforementioned transform process, in the frequency domain, is then
given by

Y (ω) = G(ω)X(ω). (3-96)
This product, in fact, is related to the convolution of the transfer function and
the input signal of the system in the time domain x(t) [53]. Thus, with the
output signal Y (ω) in hand, in the frequency domain, one can simply take its
inverse Fourier in order to convert the result to the time domain [53]

y(t) = F−1[Y (ω)]. (3-97)

3.6
Validation of the Cartesian Formulation

In this section, the derived formulation for the plane wave propagation,
using the two-port network, is applied in two types of tests, namely pulse-echo
and pitch-catch. These tests are mostly found in the inspection analysis of
defects in materials [39]. The aforementioned developed expressions are then
adapted and hereafter presented for each type of test.

For the validations presented in this section, only the piezoelectric
transducer with polarization coincident with the wave propagation direction is
considered. Therefore, the ABCD parameters for the analytical model of the
transducer are taken from section 3.4. The implementation of the expressions
found for the transversal polarization transducer, depicted in section 3.4.1, is
going to be done in the following chapter when comparisons with cylindrical
wave propagation models are performed.
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3.6.1
Application to Pulse-Echo Analysis

The presented theory for obtaining the ABCD parameters, corresponding
to elastic and piezoelectric layers, can be applied to a single pulse-echo analysis
with transducers, with the configuration presented in Figure 3.9. Some internal
components, namely: the backing layer, the ceramic transducer, and the
impedance matching layer, can be modeled as the first three layers (from left to
right) of the acoustic-electric channel example presented previously in Figure
3.3, as well as the layers after the transducer, represented in Figure 3.10. In
both figures, the electrodes are not sketched, however, they can also be inserted
in the model with the corresponding ABCD matrices obtained by (3-28).

Figure 3.9: Ultrasound transducer construction detail. Adapted from [49].

In the context of non-destructive tests, the pulse-echo analysis is related
to the investigation of imperfections inside materials, based on reflections
(echoes) captured by the same transducer that generates the pulse [39]. In
short, the voltage pulse is converted into an acoustic pulse, at the transducer,
and the signal travels through the tested object until it is reflected back to the
same transducer, coming from the defect (“defect echo”) or from the geometry
edge (“edge echo”). It is important to mention that the latter is related to twice
the thickness since the signal travels two times on the same object. Figure
3.10 better illustrates these two situations. Also, it is important to remark
that in some particular cases, this approach can even be enough for modeling
defects [11], but generally, the spatial effect of a small-size scatter cannot be
modeled by the aforementioned model [12].
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Figure 3.10: Pulse-echo scheme.

As seen through this chapter, the ABCD parameters obtained through
impedance analogy are related to a situation in which harmonic waves travel
inside the layers, but with all the expressions in frequency domain. In order to
obtain results of the pulse-echo test in time domain, some considerations are
required and are presented in the next section.

3.6.1.1
Pulser-Receiver Model

To emulate the pulse-echo test, using the two-network approach for the
appropriate acoustic-electric channel model, one has to cascade the layers of
the internal components of the transducer with the layers of the tested object.
For example, one can consider the layers L1 and L3 of Figure 3.3 as being steel,
and the layer L2 as being a section with a lower impedance, which could be seen
as a kind of defect. Considering the last layer L3 as infinite, an element with
impedance Zend can be placed at the end of the transmission channel, having
the same value of ZL3 , in order to avoid reflections. Then, only reflections from
the defective part L2 are taken into account.

Figure 3.11: Transducer impedance model.

After the cascading process, one can observe the two-port configuration
for the pulser-receiver transducer test as a whole given by
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VT

IT

 =
 ĀT B̄T

C̄T D̄T

FT

vT

 , (3-98)

where the voltage VT is the transmitter transducer voltage, being a controllable
parameter of the experiment.

For obtaining the signals of the pulse-echo analysis, one can use the
electrical impedance ZT = VT/IT of the system, which is calculated by

ZT = ĀT · Zend + B̄T

C̄T · Zend + D̄T
, (3-99)

where Zend = FT/vT is the acoustic impedance of the last layer L3 considered
as infinite. Assuming that the excitation signal is applied prior to a generator
resistance Rg, which is connected in series with the aforementioned transducer
equivalence electric impedance ZT, one can find the transfer function of the
system G(ω), using the voltage divider concept [21], illustrated in Figure 3.12.
It basically relates the output voltage Vout(ω) to the input voltage Vin(ω) by
dividing the transducer impedance ZT(ω), in receiving configuration, with the
impedance at the initial configuration, that is Rg + ZT. The term Rg is the
generator resistance, and generally assumes the value of 50 Ω. Hence, the
transfer function G(ω) is then given by

G(ω) = Vout(ω)
Vin(ω) = ZT(ω)

Rg + ZT(ω) . (3-100)

Figure 3.12: Voltage divider model.

With this transfer function, one can proceed to the transform process
described in section 3.5, and then obtain the response in the time domain by
taking the inverse Fourier transform with (3-97).
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3.6.2
Application to Pitch-Catch Analysis

Another usual test is the pitch-catch, which consists in using two trans-
ducers, one as a transmitter and the other as a receiver, where an acoustic
signal is generated and passes through a barrier reaching the receiver [54]. In
Figure 3.13 one can see, similar to the sketch for the acoustic-electric transmis-
sion channel in Figure 3.1, the pitch-catch scheme. In this test, a time delay
for the pulse is observed in the receiver. This is related to the time taken to
travel through the barrier’s thickness once (different from what was observed
in the pulse-echo test). This type of test is common in non-destructive inspec-
tion analysis [39, 55]. This configuration, actually, is extensively explored in
some works cited through this thesis, as for example in [11–15, 19, 20], where
the main objective is the transmission of data and power through the barrier
without the need for cables.

Figure 3.13: Pitch-catch scheme.

3.6.2.1
Receiver Model

As for the pulser-receiver model development, in section 3.6.1.1, one has
to cascade the layers of the internal components of the transducers (transmitter
and receiver) with the layers between them, paying attention to their order. A
sketch of this acoustic-electric model for this test is shown in Figure 3.14, in
which the first and the second ports, of the system as a whole, are electrical.

Figure 3.14: Pitch-catch transmission model.
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After the cascading process, one can obtain the two-port configuration
of the system as VT

IT

 =
 ĀTR B̄TR

C̄TR D̄TR

 VR

IR

 . (3-101)

The process of obtaining the signal at the receiver transducer is carried
out by a convolution process, as mentioned in section 3.5, where a system
transfer function G(ω) is required to relate the Fourier transform of the input
signal from the transmitter X(ω) to the Fourier transform of the output Y (ω),
related to the receiver transducer, using equation (3-96) in frequency domain.
Unlike section 3.6.1.1, obtaining the transfer function is a little different in this
case, and is related to the concept of scattering parameters [21].

To better explain what these parameters are, one can see the two-port
model of Figure 3.14 in a different manner, as in Figure 3.15, where incident
(+) and reflected (-) voltage wave amplitudes, at each port, are represented.

Figure 3.15: Two-port model voltage scheme.

Thus, a generic scattering parameter Sij, for a two-port network, can be
calculated with a combination of the different voltage wave amplitudes by [21]

Sij = V −
i

V +
j

∣∣∣∣∣
V +

k
=0 for k ̸=j

(i, j, k = 1, 2), (3-102)

in which V +
1 is the incident voltage wave amplitude at port 1, V −

1 is the
reflected voltage wave amplitude at port 1, V +

2 is the incident voltage wave
amplitude at port 2, and V −

2 is the reflected voltage wave amplitude at port 2.
For example, the scattering parameter S11, known as the reflection coefficient,
is given by

S11 = V −
1

V +
1

∣∣∣∣∣
V +

2 =0
, (3-103)

where one can notice that it measures the reflection at port 1 when port 2
has incident voltage V +

2 null, or, is terminated in a matched load, avoiding
reflections.

Thus, for the pitch-catch analysis, one uses the scattering parameter S21,
known as the transmission coefficient of a two-port network [21]. Therefore,
the transfer function is given by

G(ω) = S21(ω) = V −
2 (ω)

V +
1 (ω)

∣∣∣∣∣
V +

2 =0
. (3-104)
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The transmission parameter S21 can be related to the ABCD parameters
of the system by [21]

S21 = 2
ĀTR + B̄TR/Z0 + C̄TRZ0 + D̄TR

, (3-105)

where Z0 is a reference impedance for a matching load [21], usually set to 50
Ω. After the convolution process with the calculated transfer function G(ω),
one finally can find the signal at the receiver y(t), in the time domain, with
the inverse Fourier transform of Y (ω) indicated at equation (3-97).

3.6.3
Validation in Cartesian System with a Pulse-Echo Analysis in Time-
Domain

In this section, the developed theory for the acoustic-electric transmis-
sion channel, using the two-port network approach, is validated by means of a
pulse-echo test. The analysis here presented has the objective to demonstrate
the advantages of using this approach for this type of problem, that involves
ultrasonic waves propagation. Thus, for this purpose, a Matlab code was devel-
oped to implement the analytical model that is compared to the experimental
test.

The main advantage of the referred approach is that the results are ob-
tained in a relatively short time, when compared to commonly used numerical
methods, as for example the finite element method (FEM), requiring less com-
putational resources [11]. In order to verify the analytical code’s performance,
a FEM model was prepared, and its results were also compared. Besides the
agreements between all obtained signals, the computational requirements, as
well as the time consumption for the calculations, reinforce the usefulness of
the referred analytical approach.

3.6.3.1
Pulse-Echo Test Configuration

For this preliminary pulse-echo analysis, two ultrasound transducers,
with 1 and 5 MHz centre frequencies, were selected. These transducers were
manufactured by the Ultrasound Laboratory of the Polytechnic School of
the University of São Paulo (Laboratório de Ultrassom da EPUSP). The
1 MHz type is shown in Figure 3.16, and its internal construction can be
seen in more detail in Figure 3.9, from section 3.6.1. The pulse-echo test
can also be performed with the transducer being immersed in water [54], in
a configuration as the one presented in Figure 3.17. In this case, water is
the medium responsible for propagating the longitudinal waves between the
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transducer and the barrier, and, because of the space created between them,
an echo (front-echo), sketched in blue, relative to the reflection of the front
edge, appears in the respective time-domain voltage diagram. Due to internal
reflections at the barrier, one can also observe in the diagram, subsequent
echoes from the back edge (back-echo), in red.

Figure 3.16: Ultrasound transducer of the experiment.

Although water is not solid, the developed equations for wave propa-
gation in fluids are similar to the presented ones for the longitudinal wave
propagation in elastic media. In fact, the main difference lies in the fact that
in fluids only longitudinal waves propagate [50]. Thus, the presence of this
medium in the acoustic-electric channel does not change the calculated ABCD
transfer matrices, and consequently, the results presented in the next sections,
compared to the experiments.

The internal components of each transducer are also sketched in Figure
3.17, where the piezoelectric layer is referred as PZT (lead zirconate titanate),
being more specifically a Pz37, with complete properties findable in [56], for
instance.

Figure 3.17: Acoustic-electric channel model of experimental setup.
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Despite the fact that steel is commonly selected as the barrier, in this
experiment, acetal was selected instead. As the main objective of this analysis is
to compare only the first echo of the barrier (front-echo), the high attenuation
[35] value of acetal is helpful in mitigating internal reflections at the barrier,
making the front echoes more evident. Another reason for this choice was its
lower wave speed, increasing the delay between the internal reverberations
helping in the visualization of their times of arrival.

The most relevant parameters for the calculations in the acoustic-electric
model approach, and at the FEM model, are presented in Table 3.1 and Table
3.2. In the former, the radius r and, consequently, the area A of the transversal
section of the entire channel are given. The thickness d is given for the two
transducers, 1 and 5 MHz, respectively. The dielectric, piezoelectric and elastic
coefficients for the piezoelectric layer are also given, as well as the mechanical
quality factor Q and the tangent losses tan δ and tan θ.

Table 3.1: Parameters for the piezoelectric layer. Obtained from [49, 57]. Two
thicknesses d values are given for the 1 and 5 MHz transducers, respectively.

Properties PZT
(Pz37)

r [mm] 5
A [m2] 7.85×10−5

ρ [kg/m3] 6000
d [mm] 1.42/0.3156
ϵε

zz [F/m] 4.95×10−9

h33 [V/m] 2.95×109

cD
33 [N/m2] 8.62×1010

Q 50
tan δ 0.015
tan θ 0.0125

Table 3.2: Main parameters for the non-piezoelectric layers. Obtained from
[35,49,58]. The two values for thickness d and attenuation α correspond to the
1 and 5 MHz cases, respectively.

Properties/
Material

Backing
(Epoxy/

Tungsten)

Matching
Layer

(Epoxy/
Alumina)

Water Acetal

ρ [kg/m3] 6800 1752.9 1000 1515
cL [m/s] 1235 2590 1497.6 2422.8
d [mm] 15 0.6/0.1295 75 20.4
α [Np/m] 748.33/2445.3 138.15/497.34 0.025/0.625 25/90
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In Table 3.2, the matching layer thickness is given for each transducer,
1 and 5 MHz, respectively, being a quarter wavelength for each operating
frequency [35]. The attenuation coefficients, in the same table, for the backing
and the matching layer, as well as for the acetal barrier, were obtained
empirically by the manufacturer1, being coherent to the operating frequency
of each transducer. The speed of sound in water can be obtained by [58] and
its attenuation coefficient can be found with [35]. Also for the water layer, the
thickness value, dw in Figure 3.17, is the distance between the transducer and
the barrier. This value is also used in the model after the barrier, since this
second thickness is not relevant, due to the presence of an element with same
impedance at the end of the channel, emulating an infinity media, as explained
in section 3.6.1.1. The impedance of the backing layer Zb is obtained by the
multiplication between its density and its longitudinal wave speed, thus being
Zb = 8.4 MRayl.

3.6.3.2
Theoretical Arrival Times

Before comparing the results, the theoretical arrival times of the echoes
from the barrier are estimated. Assuming that the wave propagation has the
same direction of that given in Figure 3.17, and disregarding the thickness of
the matching layer, since it is much smaller than the first water layer, the time
interval to reach the first edge is given by

∆t1 ≈ dw

c
(water)
L

= 75 × 10−3

1497.6 = 50.08 µs. (3-106)

The interval corresponding to the time to reach the second edge of the barrier
is given by

∆tacetal = dacetal

c
(acetal)
L

= 20.4 × 10−3

2422.8 = 8.42 µs. (3-107)

To calculate the expected echoes instants to be identified in the exper-
iment signals, one has to make some considerations. The first echo, coming
from the acetal first edge, indicated as T 1 in Figure 3.18, is detected in the
transducer in a time that is twice ∆t1, consequently, it is expected to be seen
at T1 = 2 × ∆t1 ≈ 100.16 µs.

After reaching the first edge of the barrier, the transmitted signal is
reflected at the second edge, and so multiple reflections arise inside the medium,
represented in purple, in Figure 3.18. The first reflected signal from inside the
barrier, corresponding to the first observed echo in red, in the time domain
voltage diagram, can be calculated as T11 = 2 × (∆t1 + ∆tacetal) ≈ 117 µs,

1The measured parameters for the backing and the matching layer were reported in an
internal document.

DBD
PUC-Rio - Certificação Digital Nº 1712571/CA



Chapter 3. Acoustic-Electric Transmission Channel Model in a Cartesian
Coordinate System 76

and seen as the first back echo. The second reflected signal from inside the
barrier, also viewed as the second back echo in Figure 3.18, can be calculated
as T12 = 2 × (∆t1 + 2 × ∆tacetal) ≈ 133.84 µs. The subsequent echoes can be
calculated similarly.

Figure 3.18: Sketch for the expected arrival times.

When the signal reaches the front edge of the barrier a second time
and returns, coming from the first reflection at the transducer, it takes
T2 = 4 × ∆t1 ≈ 200.32 µs to be detected in the diagram, and another set
of multiple reflections inside the barrier arises. The first reflected signal in this
case can be calculated as T21 = 4 × ∆t1 + 2 × ∆tacetal ≈ 217.16 µs. And, so,
the subsequent arrival times can be calculated similarly. For the analysis of
the results, only these mentioned times are sufficient. The following equation
summarizes the calculation of the arrival times

Tij = 2(i∆t1 + j∆tacetal), (3-108)

where the first index is related to the main reflections from the first edge of
the barrier, and the second, is related to the reverberations inside the barrier.

3.6.3.3
Experimental Setup

To experimentally represent the mentioned acoustic-electric model, a
simple structure, in a pulse-echo configuration, was used to hold transducers
and the barrier, as can be seen in Figure 3.19. The whole assembly was
immersed in a water recipient. In order to avoid the presence of reflections
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from the glass wall in the experimental acquisitions, the assembly was slightly
inclined so that the transmitted pulses from the barrier’s outer edge could be
lost in the other directions.

Figure 3.19: Assembly immersed in water inside a cubic glass container.

For the excitation of the transducer and the measurements of the
signals, two equipment were necessary, namely, a Pulser/Receiver and an
Oscilloscope. The experimental setup was configured as indicated in Figure
3.20. The Pulser/Receiver equipment, an Olympus 5072PR, was connected to
the transducer and to the Tektronix MDO4104B-3 Mixed Domain Oscilloscope,
used to acquire the input voltage signal, applied to the transducer, and the
output read signal at one second connection port.

Figure 3.20: Block diagram of the experimental setup.

Figure 3.21: Experimental setup equipment.
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The transducer input voltage is applied experimentally by a broadband
spike-like excitation from the Pulser/Receiver (Olympus 5072PR) equipment.
In the analytical model, the input is given by a sinc signal with bandwidth
that reaches 2 MHz and 10 MHz, for each transducer type, namely, 1 and 5
MHz, respectively. These input signals can be seen in Figure 3.22 and Figure
3.23.
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Figure 3.22: Input signal of the analytical model, for a transducer with fc = 1
MHz. The upper diagram is the signal in the time domain. The lower is the
corresponding spectrum.
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Figure 3.23: Input signal of the analytical model, for a transducer with fc = 5
MHz. The upper diagram is the signal in the time domain. The lower is the
corresponding spectrum.
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3.6.3.4
FEM Modeling

In order to complement the analysis and validate the analytical approach,
a FEM model of the acoustic-electric channel, with the same configuration
of Figure 3.17, was prepared. For the numerical simulation, the commercial
software COMSOL Multiphysics, version 5.6, was used. Two main physics
were selected, namely Structural Mechanics, and Pressure Acoustics, being
the former for the piezoelectric transducer and the barrier, and the latter
for the water layer. A 2D plane-strain study in time-domain was selected for
the analysis. Although being a 1D problem, this configuration was preferred
because the focus was on the validation of the analytical model by comparing
the results. Another point that can be mentioned is that an implicit solver
was selected because the explicit was not available in the current version
of the software. The solver for the transient wave propagation analysis was
the generalized alpha, with a fixed time-step [59]. The FEM geometry of the
experimental test, described in section 3.6.3.1 with the aim of Figure 3.17, is
presented here in Figure 3.24.

Figure 3.24: FEM model of the preliminary experiment. From left to the right,
the layers are: backing, transducer, matching, water, barrier, and water.

The geometry details of the layers can be clearer in Figure 3.25, where
the three internal layers of the transducer (backing, piezoelectric transducer,
matching impedance layer) are shown in (a), and the barrier between the two
water layers of water is highlighted in (b). At the top and bottom of the water
layers, indicated by the red arrows in Figure 3.25 (a), two additional surfaces
were added in order to mimic open and non-reflecting infinite domains, that is,
perfectly matched layers (PMLs) with principles described in [60] and [61]. In
practice, inside them, incoming waves are absorbed. In the case of the solids, on
the other hand, there is no need to create additional surfaces, and the absorbing
conditions for incoming longitudinal and transversal waves can be imposed
at the edges, as can be seen with the lines in blue. For the backing layer,
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these conditions were added to ensure no reflections back to the piezoelectric
layer, while at the barrier, the conditions were inserted to mimic an infinite
domain, considering that the height of the piece of acetal is more relevant than
its thickness. The principles behind this absorbing mechanism can be found
in [62]. The so-called perfect absorption occurs when the artificial damping at
the edge equals exactly the impedance of the bounded medium [36].

Figure 3.25: Geometry details in FEM model: (a) transducer internal layers;
(b) barrier layer. In both images, the layers are represented with thin red
arrows. The bold arrows indicate absorbing layers.

In the context of wave propagation, it is necessary to carefully consider
some restrictions in order to properly create the mesh, such as temporal and
spatial resolution, which are crucial concerns in FEM simulation. If resolutions
are improperly chosen, then the accuracy of the results may fail. The spatial
resolution (i.e., the distance between the nodes of the mesh) must be chosen
to ensure that waves can be spatially resolved. To represent a wave on a mesh
grid, the elements must be smaller than the smallest wavelength. In practice,
this can be achieved by the following relation [63]

h̄S ≤ cLmin

nfmax
, (3-109)

where h̄S is the element edge size, cLmin is the minimum longitudinal wavespeed
in the model, fmax is the maximum frequency, and n is the number that
divides the wavelength, being an important parameter, since the higher is
its value, the more accurate is the result. For the pulse-echo analysis, the
minimum longitudinal wavespeed was taken from the water, and the maximum
frequency from the sinc excitation input signal of 2 MHz. In this case, only the
1 MHz transducer was simulated, since the 5 MHz transducer required a much
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fine mesh. Therefore, it was found a minimum wavelength of cLmin/f 1MHz
max ≈

0.75 mm.
To best assign a value for n, multiple simulations, varying n from 4 to

14, were performed and the results compared to the most refined mesh case
(n = 14), by means of a convergence test. As a metric for this analysis, the
multiple correlation coefficient R2, was selected, and can be defined by [64]

R2 = 1 −
∑N

i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2 , (3-110)

where y, in this case, is the voltage when n = 14, ȳ is its mean value, and ŷ is
the voltage vector obtained with a different value for n. The subscript i, here,
is an index that varies from 1 to the maximum vector length N . So, from the
convergence test, it was concluded that n = 12 was a reasonable choice, with
R2 = 0.9137, since R2 > 0.9 is considered sufficient for most applications [64].

With the previous considerations, the mesh was, then, constructed with
second order quadratic elements [65], with h̄S = 62.4 µm, as can be seen in
Figure 3.26.

Figure 3.26: Mesh details in FEM model.

For the numerical calculations of the transient problem, the implicit
second-order accurate method generalized-α, was selected. Among the avail-
able methods, it was the most appropriate, since it introduces less numerical
damping effects at high frequencies, being thereby more accurate [66]. Concern-
ing the temporal resolution, the time-step h̄T taken by the solver was carefully
set using the following relation

h̄T = CFL
nfmax

, (3-111)

where CFL is the Courant number from the Courant-Friedrichs-Lewy condition
[67], fmax is the maximum frequency to solve, and n is the wavelength division
parameter defined for the spatial mesh.

Taking into account the information given in [68], about solving a time-
dependent wave-type problem, and running multiple simulations with different
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values of CFL, it was concluded that the value of 0.2 was appropriate.
Considering, also, the maximum frequency as 2 MHz, from the applied voltage
to the transducer in Figure 3.22, one can calculate the fixed time-step for the
solver as being h̄T = 8.33 × 10−9 s.

3.6.4
Preliminary Results - Pulse-Echo

In this section, the preliminary results for the 1 MHz and 5 MHz
transducers, in the pulse-echo configuration tests, are presented. For the 1
MHz type, experimental, analytic and FEM simulation results are used. For
the 5 MHz case, only the experimental and analytic results are used, due to
the high computational efforts required for the FEM simulations.

3.6.4.1
1 MHz Transducer

In Figure 3.27, the analytical result, is presented for the 1 MHz trans-
ducer. In the time domain, as discussed in section 3.6.3.2, one can observe the
first echo at t ≈ 100.16 µs, and a subsequent echo, from the internal reflections
at the barrier, at t ≈ 117 µs. In fact, only one subsequent echo can be seen due
to the attenuation. The second main echo from the front edge of the barrier
at t ≈ 200.32 µs, and one subsequent internal echo at t ≈ 217.16 µs, also can
be seen in the figure. The same can be observed at the experimental result, in
Figure 3.28, and in the FEM simulation result, in Figure 3.29.
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Figure 3.27: Analytical model response for the 1 MHz transducer. The upper
diagram is the signal in the time domain. The lower is the corresponding
spectrum.
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Figure 3.28: Experimental test response for the 1 MHz transducer. The upper
diagram is the signal in the time domain. The lower is the corresponding
spectrum.
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Figure 3.29: FEM simulation response for the 1 MHz transducer. The upper
diagram is the signal in the time domain. The lower is the corresponding
spectrum.

In all these figures, at the frequency domain, one can also observe the
bandwidth of the transducer properly represented, recalling that the selected
transducer has central frequency of fc = 1 MHz. In each case, a bell shape
is observed, with slight differences between them. Only in the experimental
result, another little bell shape curve around 3 MHz can be observed, from a
second harmonic, reinforcing that no filter has been applied to the acquired
signal. Another remarkable difference, in time domain, is that, for long time
instants, the echoes observed in the experiment, around 200 µs, are relatively
low amplitude compared to those observed in the analytical and in FEM
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results.
In order to better observe the similarities between these results, each

mentioned echo is normalized with the maximum absolute value of the respec-
tive dataset (analytical, experimental or FEM) and overlaid. In Figure 3.30,
one can see the first echo comparison, between t ≈ 100.16 µs and t ≈ 105.5 µs.
It is noticeable that the curves almost coincide in phase, mainly at the center
peaks.
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Figure 3.30: First echo comparison, normalized signals for the 1 MHz trans-
ducer.

Going further, between the instants t ≈ 117 µs and t ≈ 122 µs, one can
overlay the normalized echo corresponding to the first internal reflection from
the barrier, herein referred as sub-echo, and presented in Figure 3.31. Here, it
is also noticeable that the curves almost coincide in phase at the two center
peaks.
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Figure 3.31: First sub-echo comparison, normalized signals for the 1 MHz
transducer.
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Concerning the analytical approach performance, the developed code in
Matlab, was run in a single computer with an Intel Core i5-7200U CPU at
2.50 GHz processor, with 16 GB of RAM; the computational time was 14.4247
seconds. On the other hand, the FEM simulation was performed in a more
powerful machine, that is, a High Performance Computing (HPC) system with
nodes having 2 × Intel Xeon Gold 6148 CPU at 2.40 GHz, and 385.20 GB
of RAM. In this case, one node was necessary since the simulation required
27.26 GB of physical memory and 46.63 GB of virtual memory. The result was
obtained in 1 day, 11 hours, 37 minutes, and 5 seconds, or 128225 seconds. At
this point, it is important to recall that a more fair comparison between the
methods could be made using two 1D models. However, even in this case, and
using an explicit numerical solver, it is not guaranteed that the performance
of the FEM model would be better than that of the analytical model. Despite
of that, a comparison between the methods, in the mentioned conditions, is
presented in Table 3.3. With the results presented so far, one can see that the
analytical model, based on the Two-Port Network approach, proves to be a
valuable choice, giving results with fewer computational resources.

Table 3.3: Comparison between methods for the 1 MHz transducer.

Method Machine Processor RAM
(GB)

Time
Run
(s)

Analytical Laptop Intel Core i5-7200U
CPU @ 2.50 GHz 16 14.42

FEM HPC Intel Xeon Gold 6148
CPU @ 2.40 GHz 385.20 2422.8

3.6.4.2
5 MHz Transducer

For the 5 MHz transducer, in Figure 3.32, the result provided by the code,
developed with the analytical formulation based on transfer ABCD matrices, is
presented. In time domain, as discussed in section 3.6.3.2, one can also observe
the first echo at t ≈ 100.16 µs. The subsequent echo, observed in the 1 MHz
result at t ≈ 117 µs, is not visible, due to the high attenuation effect observed
in this frequency. The second main echo from the front edge of the barrier at
t ≈ 200.32 µs also can be seen in the figure. The same can be observed at the
experimental result, in Figure 3.33.
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Figure 3.32: Analytical model response for the 5 MHz transducer. The upper
diagram is the signal in the time domain. The lower is the corresponding
spectrum.
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Figure 3.33: Experimental test response for the 5 MHz transducer. The upper
diagram is the signal in the time domain. The lower is the corresponding
spectrum.

In the frequency domain, one can observe the band of the transducer
properly represented, with central frequency of fc = 5 MHz. In each case, a
bell shape band, with a slight difference in their thickness. Aiming to better
observe the similarities between the results, as seen for the 1 MHz transducer,
each mentioned echo is normalized with the maximum absolute value of the
respective dataset (analytical or experimental) and overlaid. In Figure 3.34, one
can see the first echo comparison, between t ≈ 100.16 µs and t ≈ 105.5 µs.
It is noticeable that the curves almost coincide in phase, mainly at the center
peaks.
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Figure 3.34: First echo comparison, normalized signals for the 5MHz trans-
ducer.

The analytical result, in this case, was obtained in 14.4380 seconds, as
can be seen in Table 3.4. Due to the high computational efforts required, since
the mesh for the 5 MHz transducer was around 122 times higher than for
the 1 MHz, the results for the FEM analysis were not obtained nor presented
here. Another remarkable advantage that can be addressed, concerning the
analytical model, is that the time for obtaining the result for the 5MHz
transducer was almost the same compared to the 1 MHz case.

Table 3.4: Performance of the analytical method for the 5 MHz transducer.

Method Machine Processor RAM
(GB)

Time
Run
(s)

Analytical Laptop Intel Core i5-7200U
CPU @ 2.50 GHz 16 14.44

With the results presented in this section, it was possible to validate
the two-port network approach for the acoustic-electric transmission channel
model, for plane waves, with a good level of agreement. The objective of this
section was indeed to validate the method, using a Matlab code, in order to
serve as a solid foundation for the development of the formulation in cylindrical
coordinates in the following chapter.
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4
Acoustic-Electric Transmission Channel in the Cylindrical Co-
ordinate System

4.1
Introduction

The developed theory for modeling the acoustic-electric transmission
channel, by means of a two-port network approach, is extended in this
chapter to cylindrical coordinates. The main advance here relies in the fact
that cylindrical wavefronts in elastic solids and piezoelectric materials can
be modeled with set of novel ABCD parameters. The same steps taken for
modeling the plane wave propagation in Chapter 3 are used here for the
cylindrical problem. Through this chapter, it will be seen that terms depending
on the radius of the geometries appear at each developed ABCD parameter,
being one of the main differences compared to the foregoing plane waves case.

4.2
Elastic Layer in Cylindrical Coordinates

The elastic solid is sketched as a part of the cylinder presented in Figure
4.1, and, in this case, the wave propagation is considered toward the radial
direction r.

Figure 4.1: Elastic layer represented in cylindrical coordinates.
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In order to find the wave equation of interest, it is necessary to use
Newton’s second law. Neglecting body forces, one can find with (2-20), in
cylindrical coordinates, the following matrix equation [37]


∂
∂r

+ 1
r

−1
r

0 0 ∂
∂z

1
r

∂
∂θ

0 1
r

∂
∂θ

0 ∂
∂z

0 ∂
∂r

+ 2
r

0 0 ∂
∂z

1
r

∂
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∂
∂r

+ 1
r

0





σrr

σθθ

σzz
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σrz

σrθ


= ρ
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∂t2

∂2uz

∂t2


. (4-1)

In the radial direction, neglecting variations in z and θ directions, one
has

ρ
∂2ur

∂t2 =∂σrr

∂r
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σθθ.

(4-2)

Recalling that the governing constitutive equations for the elastic layer
are given by (2-21), one can write, in cylindrical coordinates, the following
matrix equation for isotropic materials [37]

σrr

σθθ

σzz

σθz

σrz

σrθ


=



λ + 2µ λ λ 0 0 0
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0 0 0 µ 0 0
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. (4-3)

So, the stress σrr is given by

σrr = (λ + 2µ)εrr + λεθθ + λεzz

= (λ + 2µ)∂ur
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(4-4)

and the stress σθθ is given by

σθθ = λεrr + (λ + 2µ)εθθ + λεzz

= λ
∂ur
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(4-5)
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The terms c11 and c12 are the elastic constants mentioned in section 2.3.
In this case, they are related to the cylindrical coordinates system, having the
conversion between indexes given in Table 2.1.

Application of (4-4) and (4-5) to (4-2) leads to the wave equation

ρ
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(4-6)

or ∂2ur

∂r2 + ∂

∂r

(1
r

ur

)
− 1

c2
L

∂2ur

∂t2 = 0, (4-7)

where
cL =

√
c11

ρ
. (4-8)

The radial displacement ur can be considered as coming from a potential
[40]

ur = ∂φ

∂r
, (4-9)

and this potential assumes a harmonic solution

φ(r, t) = φ̂(r)e−jωt. (4-10)

Substitution of equation (4-10) in equation (4-7) yields

1
r

∂

∂r

(
r

∂φ̂

∂r

)
+ κ2

Lφ̂ = 0, (4-11)

in which κL = ω/cL. This equation, with some mathematical manipulations,
leads to a Bessel differential equation, with ν = 0 (the order of Bessel function),
and has solution [40]

φ̂(r) = cL

ω

[
a1J0

(
ω

cL
r
)

+ a2Y0

(
ω

cL
r
)]

, (4-12)

in which J0(·) and Y0(·) are the zeroth-order Bessel functions of the first and
second kind, respectively.

Using the following relations [69]

J0(ξ) = 1
2
[
H

(1)
0 (ξ) + H

(2)
0 (ξ)

]
, (4-13a)

Y0(ξ) = 1
2j

[
H

(1)
0 (ξ) − H

(2)
0 (ξ)

]
, (4-13b)

one can find that
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φ(r, t) = cL

ω
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cL
r
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(4-14)

in which H
(1)
0 (·) and H

(2)
0 (·) are the zeroth-order Hankel functions of first and

second kinds, respectively. In equation (4-14), H
(1)
0 (·) represents a harmonic

wave train propagating inwards, toward r = 0, whereas H
(2)
0 (·) represents a

similar wave train propagating outwards, from r = 0 [40].
The two-port network model for the elastic layer, in cylindrical coor-

dinates, is sketched in Figure 4.2. For this model, the following boundary
conditions are assumed

∂ur

∂t
(r1) = v1, (4-15a)

∂ur

∂t
(r2) = v2, (4-15b)

σrr(r1) = F1

A1
, (4-15c)

σrr(r2) = F2

A2
, (4-15d)

in which r2 = r1 + d, being d the thickness of the layer, and, A1 and A2 are
the cross sectional areas at r1 and r2, respectively. It is important to point out
here that the cross sectional area, in this case, corresponds to a lateral surface
of the corresponding cylinder, thus being A2 > A1. This is quite different from
what is observed in Chapter 3 when the areas from the input and output ports
are the same. In Figure 4.3 one can better see the areas A1 and A2, and the
cross sectional area of the cylinder, represented by Ã.

Figure 4.2: Elastic layer two-port model in cylindrical coordinates. The repre-
sented forces are normal.
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Figure 4.3: Elastic layer surface areas.

From (4-9) and (4-14) one has

ur(r, t) = −
[
b1H

(1)
1

(
ω

cL
r
)

+ b2H
(2)
1

(
ω

cL
r
)]

ejωt, (4-16)

recalling that for the Hankel functions [69], [70], [71]

d
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ν (ξ)
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d
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ν (ξ) = 1
2
[
H

(2)
ν−1(ξ) − H

(2)
ν+1(ξ)

]
, (4-17b)

in which ν is the order.
Differentiation of (4-16) with respect to time, gives
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Applying the velocity boundary conditions (4-15a) and (4-15b), leads to
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Rearranging (4-19a), one can find that
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and substituting in (4-19b) gives
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(4-21)
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At this point, two new functions can be defined as
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Thus, two new variables Θ1 and Θ2 can be defined as
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being dimensionless values.
With manipulations in (4-21), and using the new defined variables, one

can find that
b2 = Θ1v1 − v2
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1
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, (4-24)

and consequently,
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Substitution of (4-25) and (4-24) in (4-16) leads to

ur(r) = 1
jω

[
Θ2v1 − v2

Θ2 − Θ1
f1(r) − Θ1v1 − v2

Θ2 − Θ1
f2(r)

]
. (4-26)

Differentiation of (4-26) with respect to r, using (4-17a) and (4-17b), gives

∂ur

∂r
= 1

jω

ω

cL

[
Θ2v1 − v2

Θ2 − Θ1
f3(r) − Θ1v1 − v2

Θ2 − Θ1
f4(r)

]
, (4-27)

where,

f3(r) =

(
ω
cL

r
)−1

H
(1)
1

(
ω
cL

r
)

− H
(1)
2

(
ω
cL

r
)

H
(1)
1

(
ω
cL

r1
) , (4-28a)

f4(r) =1
2

H
(2)
0

(
ω
cL

r
)

− H
(2)
2

(
ω
cL

r
)

H
(2)
1

(
ω
cL

r1
) . (4-28b)

Consequently,
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σrr(r) =c11

jω

ω

cL

1
Θ2 − Θ1

[
(Θ2v1 − v2)f3(r) − (Θ1v1 − v2)f4(r)

]
+ c12

r

1
jω(Θ2 − Θ1)

[
(Θ2v1 − v2)f1(r) − (Θ1v1 − v2)f2(r)

]
.

(4-29)

Application of boundary conditions (4-15c) and (4-15d) in (4-29), with
some manipulations, leads to

σrr(r1) = 1
jω(Θ2 − Θ1)

[
c11

ω

cL
(Θ2Γ1 − Θ1Γ2) + c12

r1
(Θ2 − Θ1)

]
v1

− 1
jω(Θ2 − Θ1)

c11
ω

cL
(Γ1 − Γ2)v2 = F1

A1
,

(4-30)

and

σrr(r2) = 1
jω(Θ2 − Θ1)

c11
ω

cL
(Θ2Γ3 − Θ1Γ4)v1

− 1
jω(Θ2 − Θ1)

[
c11

ω

cL
(Γ3 − Γ4) + c12

r2
(Θ1 − Θ2)

]
v2 = F2

A2
,

(4-31)

where,

Γ1 =

(
ω
cL

r1
)−1

H
(1)
1

(
ω
cL

r1
)

− H
(1)
2

(
ω
cL

r1
)

H
(1)
1

(
ω
cL

r1
)

=
(

ω

cL
r1

)−1
−

H
(1)
2

(
ω
cL

r1
)

H
(1)
1

(
ω
cL

r1
) = f3(r1), (4-32a)

Γ2 = 1
2

H
(2)
0

(
ω
cL

r1
)

− H
(2)
2

(
ω
cL

r1
)

H
(2)
1

(
ω
cL

r1
) = f4(r1), (4-32b)

Γ3 =

(
ω
cL

r2
)−1

H
(1)
1

(
ω
cL

r2
)

− H
(1)
2

(
ω
cL

r2
)

H
(1)
1

(
ω
cL

r1
)

= Θ1

(
ω

cL
r2

)−1
−

H
(1)
2

(
ω
cL

r2
)

H
(1)
1

(
ω
cL

r1
) = f3(r2), (4-32c)

Γ4 = 1
2

H
(2)
0

(
ω
cL

r2
)

− H
(2)
2

(
ω
cL

r2
)

H
(2)
1

(
ω
cL

r1
) = f4(r2). (4-32d)

Recalling that the areas A1 and A2 represent lateral surface areas of
cylinders with radius r1 and r2, respectively, one can define a relation between
them with

δ = A2

A1
= 2πr2dv

2πr1dv
= r1 + d

r1
, (4-33)
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in which dv is the height of the considered cylinder.
Thus, from (4-30) and (4-31), and using (4-33), with some manipulations,

one can find that

F1 = − Z1χ1v1 + Z1χ2v2, (4-34a)
F2 = − δZ1χ3v1 + δZ1χ4v2, (4-34b)

where,

χ1 = j

Θ2 − Θ1

[
(Θ2Γ1 − Θ1Γ2) + c12

c11

cL

ω

1
r1

(Θ2 − Θ1)
]

, (4-35a)

χ2 = j

Θ2 − Θ1
(Γ1 − Γ2), (4-35b)

χ3 = j

Θ2 − Θ1
(Θ2Γ3 − Θ1Γ4), (4-35c)

χ4 = j

Θ2 − Θ1

[
(Γ3 − Γ4) + c12

c11

cL

ω

1
r2

(Θ1 − Θ2)
]

, (4-35d)

and
Z1 = A1

jω
c11j

ω

cL
= A1c11

cL
, (4-36)

is the acoustic impedance for the propagation towards r direction, similar
to the acoustic impedance defined at (3-21), with the main difference in
the attenuation term α, that was not inserted in this case, for the sake of
simplification. In fact, it is as α has been set to zero inside the γ term in
(3-21).
Rearranging equations (4-34a) and (4-34b), in terms of F2 and v2, gives

F1 = 1
δ

χ1

χ3
F2 + Z1

(
χ2χ3 − χ1χ4

χ3

)
v2, (4-37a)

v1 = Z−1
1

1
δ

(−1)
χ3

F2 + χ4

χ3
v2. (4-37b)

The two-port configuration is, then, written asF1

v1

 =
 1

δ
χ1
χ2

Z1
(
χ2 − χ1χ4

χ3

)
Z−1

1
1
δ

(−1)
χ3

χ4
χ3

F2

v2

 , (4-38)

Consequently, the ABCD matrix associated with the elastic layer, in cylindrical
coordinates, is given by

Acyl
elas =

 1
δ

χ1
χ2

Z1
(
χ2 − χ1χ4

χ3

)
Z−1

1
1
δ

(−1)
χ3

χ4
χ3

 . (4-39)

One can notice here that the ABCD parameters found agree with the
ones presented in section 3.3, for plane wave propagation in elastic solids in
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cartesian coordinates, where one can clearly see the impedance Z1 and its
inverse Z−1

1 at B̄ and C̄ parameters. Another interesting point to mention is
that, for higher values of radius (r1 and r2), the terms χ1 and χ4 depend less
on the elastic term c12, as can be seen in (4-35a) and (4-35d).

Another point that deserves a mention is that, similar to what is observed
in the plane wave propagation, a diffractive loss also occurs in the cylindrical
case, between the transducer that generates the acoustic waves and the
subsequent elastic medium of propagation. However, the diffractive attenuation
expressions presented in section 3.3.1 are not appropriate for this case, since
the contact area of the transducer of the model presented by [51] is circular.
Therefore, in this thesis, for the sake of brevity, the diffraction effect is not
considered.

4.3
Piezoelectric Layer in Cylindrical Coordinates

The piezoelectric layer model, in cylindrical coordinates, is sketched in
Figure 4.4, in which one can see, actually, a three-port network model, since
the third port is electrical. As discussed in section 3.4, an impedance Zb,
corresponding to the backing layer, is placed at port 1, thus converting the
model into two-port. The following development assumes that this piezoelectric
layer acts as a transmitter, with the input being electrical and the output
mechanical, leading to a propagation towards positive r direction. Similar
to what was presented in section 3.4.1, the polarization is considered in
z direction, being perpendicular to the propagation direction. That means
that the voltage is applied between the top and bottom surfaces of the
piezoelectric layer. The choice for this poling configuration was made due to
the simplicity provided in the calculations of the ABCD parameters, avoiding
more complicated math passages inside a specific integral, as will be seen in
the following development. In short, the voltage is applied at the top and
bottom surfaces, leading, with the appropriate signal, to a vibration in the
radial direction.
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Figure 4.4: Piezoelectric layer in cylindrical coordinates. The represented forces
are normal.

As for elastic materials, the wave equation for the piezoelectric layer is
obtained using Newton’s second law matrix equation (4-1). Taking the radial
component, from (4-2), one can see that it is necessary to find σrr and σθθ.

Hence, from the constitutive equations for piezoelectric materials in
cylindrical coordinates, presented in (2-39a) and (2-39b), one can obtain

Dz = ϵε
zzEz + ez1εrr + ez1εθθ + ez3εzz

= ϵε
zzEz + ez1

∂ur

∂r
+ ez1

1
r

ur + 1
r�

�
��7

0
∂uθ

∂θ

+ ez3
�
�
��7

0
∂uz

∂z

= ϵε
zzEz + ez1

∂ur

∂r
+ ez1

1
r

ur,

(4-40)

σrr = −ez1Ez + cE
11εrr + cE

12εθθ + cE
13εzz

= −ez1Ez + cE
11

∂ur

∂r
+ cE

12

1
r

ur + 1
r�

�
��7

0
∂uθ

∂θ

+ cE
13
�
�
��7

0
∂uz

∂z

= −ez1Ez + cE
11

∂ur

∂r
+ cE

12
1
r

ur,

(4-41)

σθθ = −ez1Ez + cE
12εrr + cE

11εθθ + cE
13εzz

= −ez1Ez + cE
12

∂ur

∂r
+ cE

11

1
r

ur + 1
r�

�
��7

0
∂uθ

∂θ

+ cE
13
�
�
��7

0
∂uz

∂z

= −ez1Ez + cE
12

∂ur

∂r
+ cE

11
1
r

ur.

(4-42)
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Rearranging, one can find

Ez = βε
33Dz − ez1β

ε
33

∂ur

∂r
− ez1β

ε
33

1
r

ur, (4-43a)

σrr = −ez1β
ε
33Dz + cD

11
∂ur

∂r
+ cD

12
1
r

ur, (4-43b)

σθθ = −ez1β
ε
33Dz + cD

12
∂ur

∂r
+ cD

11
1
r

ur, (4-43c)

where

cD
11 = cE

11 + e2
z1β

ε
33, (4-44a)

cD
12 = cE

12 + e2
z1β

ε
33, (4-44b)

are the transducer’s elastic stiffness constants in the thickness dimension as
measured under constant electric displacement.

Differentiation of σrr in relation to r gives

∂σrr

∂r
= cD

11
∂2ur

∂r2 + cD
12

∂

∂r

(1
r

ur

)
. (4-45)

Thus, substituting in Newton’s second law, at (4-2), one can finally find the
wave equation

ρ
∂2ur

∂t2 =cD
11

∂2ur

∂r2 + cD
12

∂

∂r

(1
r

ur

)
+ 1

r

(
−ez1β

ε
33Dz + cD

11
∂ur

∂r
+ cD

12
1
r

ur

)

− 1
r

(
−ez1β

ε
33Dz + cD

12
∂ur

∂r
+ cD

11
1
r

ur

)

=cD
11

∂2ur

∂r2 + cD
12
���

���∂

∂r

(1
r

ur

)
+ 1

r
cD

11
∂ur

∂r
+

���
��1

r
cD

12
1
r

ur

−
�

����1
r

cD
12

∂ur

∂r
− 1

r
cD

11
1
r

ur

=cD
11

∂2ur

∂r2 + cD
11

∂

∂r

(1
r

ur

)
,

(4-46)

or ∂2ur

∂r2 + ∂

∂r

(1
r

ur

)
− 1

c2
L

∂2ur

∂t2 = 0, (4-47)

where
cL =

√√√√cD
11
ρ

. (4-48)

Here one can notice that the wave equation is similar to the developed for
elastic solids in (4-7), with the main difference in the elastic stifness constant
cD

11, that has a piezoelectric component inside, as can be seen in (4-44a).
To find solutions for the wave equation (4-47), one can use the same

steps taken for the elastic layer, by assuming that ur comes from a potential
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φ, as in (4-9), and that it assumes harmonic solution, as in (4-10), and solve
the Bessel differential equation (4-11) to finally obtain ur(r, t), at (4-16), and
its derivative in relation to time, at (4-18), by means of Hankel functions.
With the same velocity boundary conditions (4-15a) and (4-15b), at the faces
corresponding to r1 and r2, one can find the same expression for ur(r), as in
(4-26), and find its derivative in relation to r, as in (4-27). The main difference
comes when using the force boundary conditions at the faces, as in (4-15c) and
(4-15d), due to the addition of the electrical displacement Dz term in σrr, as
can be seen below, from (4-43b).

σrr(r) =cD
11

jω

ω

cL

1
Θ2 − Θ1

[
(Θ2v1 − v2)f3(r) − (Θ1v1 − v2)f4(r)

]

+ cD
12
r

1
jω(Θ2 − Θ1)

[
(Θ2v1 − v2)f1(r) − (Θ1v1 − v2)f2(r)

]
− ez1β

ε
33Dz.

(4-49)

The electric displacement Dz can be assumed as being harmonic, as seen
in equation (3-48). However, the dependency with the current I3, using Gauss’
Law [49], is found in a different manner, by

I3 = d

dt

(
DzÃ

)
= d

dt

(
D0e

jωtÃ
)

= jωÃD0e
jωt = jωÃDz, (4-50)

where Ã is the cross sectional area of the considered cylinder in z direction, as
indicated in Figure 4.3, whose value is given by

Ã =π(r2
2 − r2

1)
=π(r2 + r1)(r2 − r1)
=π(2r1 + d)d.

(4-51)

As for A2, one can find a relation with A1 by

δpz = Ã

A1
= π(2r1 + d)d

2πr1dv
= 2r1 + d

2r1

d

dv
. (4-52)

Thus, from (4-50) and (4-52), one has

Dz = I3

jωÃ
= 1

δpz

1
jωA1

I3. (4-53)

Substitution of Dz in (4-49), applying the force boundary condition (4-
15c) at r = r1, and the rearrangement in terms of v1, v2 and I3, gives
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σrr(r1) = 1
jω(Θ2 − Θ1)

[
cD

11
ω

cL
(Θ2Γ1 − Θ1Γ2) + cD

12
r1

(Θ2 − Θ1)
]

v1

− 1
jω(Θ2 − Θ1)

cD
11

ω

cL
(Γ1 − Γ2)v2

− 1
δpz

ez1β
ε
33

jωA1
I3 = F1

A1
.

(4-54)

Doing the same at r = r2, applying the force boundary condition (4-15d), one
has

σrr(r2) = 1
jω(Θ2 − Θ1)

cD
11

ω

cL
(Θ2Γ3 − Θ1Γ4)v1

− 1
jω(Θ2 − Θ1)

[
cD

11
ω

cL
(Γ3 − Γ4) + cD

12
r2

(Θ1 − Θ2)
]

v2

− 1
δpz

ez1β
ε
33

jωA1
I3 = F2

A2
.

(4-55)

Rearranging (4-54) and (4-55), using (4-33), and with some manipulations, one
can find

F1 = −Z1χ1v1 + Z1χ2v2 − 1
δpz

ez1β
ε
33

jω
I3, (4-56a)

F2 = −δZ1χ3v1 + δZ1χ4v2 − δ

δpz

ez1β
ε
33

jω
I3. (4-56b)

To solve the system it is necessary one more equation, obtained by
integrating the electric field between z = 0 and z = dv, being [49]

V3 =
∫ dv

0
Ezdz, (4-57)

but, as Ez does not depend on z, V3 can be simply calculated by

V3 = Ezdv. (4-58)

Thus, with (4-58), and with multiple manipulations, one can obtain

V3 = ez1β
ε
33

jω
Ω1(r)v1 − ez1β

ε
33

jω
Ω2(r)v2 + 1

jωC0
I3, (4-59)

where

Ω1(r) = dv

Θ1 − Θ2

 ω

cL

[
Θ2f3(r) − Θ1f4(r)

]
+ 1

r

[
Θ2f1(r) − Θ1f2(r)

], (4-60a)

Ω2(r) = dv

Θ1 − Θ2

 ω

cL

[
f3(r) − f4(r)

]
+ 1

r

[
f1(r) − f2(r)

], (4-60b)

and C0 is the clamped capacitance (zero-strain) defined here as
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C0 = ϵε
zzÃ

dv
. (4-61)

Thus, from (4-56a), (4-56b) and (4-59), one has a three-port model [21],
that can be described with

F1

F2

V3

 =


−Z1χ1 Z1χ2 − 1

δpz

ez1βε
33

jω

−δZ1χ3 δZ1χ4 − δ
δpz

ez1βε
33

jω
ez1βε

33
jω

Ω1(r) − ez1βε
33

jω
Ω2(r) 1

jωC0



v1

v2

I3

 , (4-62)

being similar to the three-port model expression shown in (3-87), for the plane
wave case.
Choosing v2 as the independent variable, the set of equations (4-56a), (4-56b)
and (4-59) can be rewritten as

F1 = 1
δ

χ1

χ3
F2 + Z1

χ2 − χ1χ4

χ3

v2 + 1
δpz

ez1β
ε
33

jω

χ1

χ3
− 1

I3, (4-63a)

v1 = −1
δ

Z−1
1

χ3
F2 + χ4

χ3
v2 − 1

δpz

Z−1
1

χ3

ez1β
ε
33

jω
I3, (4-63b)

V3 = −1
δ

Z−1
1

χ3

ez1β
ε
33

jω
Ω1(r)F2 + ez1β

ε
33

jω

Ω1(r)χ4

χ3
− Ω2(r)

v2

+ 1
δpz

e1β
ε
33

jω

 δpz

ez1βε
33C0

− Z−1
1

χ3

ez1β
ε
33

jω
Ω1(r)

I3. (4-63c)

In order to find a two-port configuration, the acoustic impedance from
the backing layer of the transducer Zb is used. As seen before, the presence
of this impedance introduces a relation between F1 and v1, more precisely
F1 = −v1Zb, as seen in (3-59).

Then, with some algebraic manipulations, one can find the two-port
equation, in cylindrical coordinates, for the piezoelectric layer acting as a
transmitter,

V3 = Ācyl
PT

F2 + B̄cyl
PT

v2, (4-64a)
I3 = C̄cyl

PT
F2 + D̄cyl

PT
v2, (4-64b)
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in which,

Ācyl
PT

= − δpz

δ

1
ez1βε

33C0

Z1 − Zbχ
−1
1

Z1(χ1 − χ3)χ−1
1 − Zbχ

−1
1

− 1
δ

j
ez1β

ε
33

ωZ1
Ω1(r) Z1χ

−1
1

Z1(χ1 − χ3)χ−1
1 − Zbχ

−1
1

, (4-65a)

B̄cyl
PT

= − δpz
Z1

ez1βε
33C0

Z1(χ3χ2 − χ1χ4)χ−1
4 + Zb

Z1(χ1 − χ3)χ−1
4 − Zbχ

−1
4

+ j
ez1β

ε
33

ω

Z1[Ω2(r)(χ1 − χ3) − Ω1(r)(χ2 − χ4)]χ−1
4

Z1(χ1 − χ3)χ−1
4 − Zbχ

−1
4

+ j
ez1β

ε
33

ω

−ZbΩ2(r)χ−1
4

Z1(χ1 − χ3)χ−1
4 − Zbχ

−1
4

, (4-65b)

C̄cyl
PT

= − δpz

δ
j

ω

ez1βε
33

Z1 − Zbχ
−1
1

Z1(χ1 − χ3)χ−1
1 − Zbχ

−1
1

, (4-65c)

D̄cyl
PT

= − δpzj
ωZ1

ez1βε
33

Z1(χ3χ2 − χ1χ4)χ−1
4 + Zb

Z1(χ1 − χ3)χ−1
4 − Zbχ

−1
4

. (4-65d)

Compared to the ABCD parameters found in section 3.4.1, for a plane
wave propagation in a transversely polarized transducer, expressed in equations
(3-91a), (3-91b), (3-91c), and (3-91d), similarities can be found, mainly when
looking to the impedance terms Z1 and Zb. A remarkable similarity is in the
presence of the piezoelectric coupling constant ez1, responsible for relating the
displacement in r with the applied electric field in z, being coherent with the
assumption of an electrical poling perpendicular to the propagation direction.

For the sake of simplicity, the terms Ω1(r) and Ω2(r) inside the param-
eters Ācyl

PT
and B̄cyl

PT
can be simplified, for computational implementation pur-

poses, to the case corresponding to the average radius of the layer between r1

and r2, that is
Ωi(rmed) = Ωi

(
r1 + r2

2

)
, (i = 1, 2). (4-66)

The receiving configuration can be obtained similarly to section 3.4,
in which the ABCD matrix related to the piezoelectric layer in transmitter
configuration APT is transformed into APR by equation (3-64).

In short, in this chapter, the ABCD parameters, related to the two-
port network loss-less approach described through this thesis, for the acoustic-
electric transmission channel in cylindrical coordinates were found.
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5
Results

5.1
Introduction

In this chapter, the developed theory for modeling the acoustic-electric
channel in cylindrical coordinates, by means of the two-port network approach,
with the ABCD parameters presented in Chapter 4, is implemented in a
computational routine. For this purpose, two tests depicted in Chapter 3,
namely pulse-echo and pitch-catch, are used, the latter further explored for
the experimental validation. Initially, an analysis varying the internal radius
of the acoustic-electric channel and, consequently, the radius of the subsequent
layers, maintaining their thicknesses unaltered, is performed. The objective is
to analyze the differences between the results when the radius is increased
towards infinity, since some of the ABCD parameters, derived in Chapter 4,
presented an inverse proportionality to the radius. Also, for this analysis,
the analytical model developed for the transversely polarized piezoelectric
transducer, presented in Chapter 3, was used as a plane wave reference case.
Additionally, at the end of this chapter, an experimental test is presented; the
result is compared to the one obtained with the corresponding acoustic-electric
transmission channel model in cylindrical coordinates developed in this thesis.
Furthermore, comparisons with numerical FEM simulations are performed,
complementing the analysis.

5.2
Model Implementation

The formulation developed in Chapter 4, for both elastic and piezoelectric
layers, was implemented as a Matlab code, similar to Chapter 3, aiming at
pulse-echo and pitch-catch tests, depicted with more details in sections 3.6.1
and 3.6.2, respectively. However, in this case, the transducer has a transversal
polarization compared to the propagation direction (radial). For this reason, it
was also carried out the implementation of the plane wave case at a transversely
polarized transducer, depicted in Chapter 3, section 3.4.1. This case was
performed in order to be a plane wave reference for the subsequent analyses
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of the cylindrical approach. The materials and geometries of the cylindrical
models are similar to those presented in Tables 3.1 and 3.2. However, due to
the cylindrical nature of the propagation, further properties are required, as
can be seen in Tables 5.1 and 5.2. One important point to mention is that,
in Chapter 3, the cross-sectional area of the channel presented in Figure 3.17,
corresponding to the performed experimental test, was circular. Meanwhile, in
the cases presented in this section, the surfaces of each layer are cylindrical,
being equivalent to bending a rectangular cross-sectional area. The shape of
each test setup is more clearly explained in the subsequent sections 5.2.1 and
5.2.2.

Table 5.1: Parameters for the piezoelectric layer in the cylindrical coordinates
model. Obtained from [49,57].

Properties PZT
(Pz37)

dv [mm] 10
r1 [mm] 5
d [mm] 1.42
ρ [kg/m3] 6000
ϵε

zz [F/m] 4.95×10−9

ez1 [C/m2] 1.11
cD

11 [N/m2] 7.25×1010

cD
12 [N/m2] 4.19×1010

In Table 5.1, one can see that the thickness d, the density ρ and the
dielectric coefficient ϵε

zz are the same from the experiment, depicted in section
3.6.3.1. The height dv is a parameter that is given for the entire channel, since
all the layers have the same height. The internal radius of the piezoelectric
transducer, r1, is also a basis parameter, since the subsequent layers have their
radii values given by the sum of the previous radius and the corresponding
thickness, as can be seen in Figure 5.1. In short, the outermost radius of an
nth layer is given by

rn+1 = r1 + d1 + d2 + · · · + dn = r1 +
n∑

i=1
di. (5-1)

Another information required for the piezoelectric layer is the constant
ez1 instead of h33, which is related to ez3. Also, here, the elastic constants cD

11

and cD
12 are required, instead of cD

33, because the former is related to the prop-
agation towards r direction, perpendicular to the electric field polarization (z
direction), whilst the latter emerges because stress and strain θθ components
matter this time, as can be seen in equations (4-2), (4-4), and (4-5). For the
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Figure 5.1: Scheme of layers radii.

water layer, despite the fact of being a fluid, the elastic constants were calcu-
lated assuming similar to an isotropic material, with the Lamé parameters, λ

and µ, calculated as a function of the bulk modulus, or alternatively, using the
density and speed of sound, as can be seen in [72].

Table 5.2: Main parameters for the non-piezoelectric layers in the cylindrical
coordinates model. Obtained from [35,49,58].

Properties/
Material

Backing
(Epoxy/

Tungsten)

Matching
Layer

(Epoxy/
Alumina)

Water Acetal

ρ [kg/m3] 6800 1752.9 1000 1515
cL [m/s] 1235 2590 1497.6 2422.8
d [mm] 15 0.6 75 20.4
c11 [N/m2] - 1.18×1010 2.24×109 8.89×109

c12 [N/m2] - 5.72×109 2.24×109 2.24×109

In the next sections, the pulse-echo and the pitch-catch tests of the
cylindrical models are presented. In both cases, a sinc function signal with
broad-band reaching 2 MHz was used as the input voltage signal. This signal
is shown in Figure 3.22, of section 3.6.3.3.

5.2.1
Pulse-Echo Setup

The upper view of the pulse-echo test model for the cylindrical wave
propagation case is illustrated in Figure 5.2, being similar to the model
presented in Figure 3.17 for the plane wave propagation, but with a difference
in the polarization of the transducer, which in this case is perpendicular to the
plane of the figure. Also, in the same figure, the thicknesses of the layers are
presented, and each radius can be calculated with equation (5-1). It is worth
mentioning that, the backing layer thickness is not important for the analytical
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model, since the input is given by its impedance Zb. Likewise, the second water
layer thickness is not relevant, since the outgoing wavefronts are not reflected
back, because of being considered as an infinite medium. As seen in section
3.6.1.1, to obtain this effect, the last layer needs to have the same impedance
as the previous medium. In this case, the medium is water (Zend = Zwater).
In short, each layer of the acoustic-electric model of Figure 5.2 can be seen as
rings with thickness d and height dv. In different colors, from the center to the
outer radius, one can see the backing layer (gray ring), the piezoelectric layer
(yellow ring), the matching impedance layer (orange ring), the water layer
(cyan ring), the barrier (white ring), and the last water layer (cyan ring). The
white circle in the center can be a place for holding the transducer since the
backing layer thickness is ideally not important for the calculations, only its
impedance Zb.

Figure 5.2: Acoustic-electric channel model for the pulse-echo analysis in
cylindrical coordinates.

It is worth calculating the theoretical times at which the piezoelectric
transducer captures the echoes. In fact, as the horizontal thicknesses and
materials are the same as those presented in section 3.6.3.2, the times of
propagation through the water layer and through the acetal barrier calculated
still hold, that is, ∆t1 = 50.8 µs and ∆tacetal = 8.42 µs. Thus, one expects
to encounter, in the time domain, the echoes from the internal surface of
the barrier at T1 ≈ 100.16 µs and T2 ≈ 200.32 µs. The reverberations from
the outer surface, coming from the first echo, are expected to be seen at
T11 ≈ 117 µs and T12 ≈ 133.84 µs. And, one reverberation from the second
echo, at T21 ≈ 217.16 µs. Figure 3.18, in section 3.6.3.2, illustrates a schematic
representation of the propagation paths that yield the aforementioned time of
arrivals. The expression for each time of arrival is given in equation (3-108).
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5.2.2
Pitch-Catch Setup

For the pitch-catch cylindrical model, three more layers were added at
the end of the geometry presented for the pulse-echo test, as can be seen
in Figure 5.3. The outer water layer, after the barrier, this time has the
same thickness as the inner, which is d5 = 75 mm. The additional three
layers, after water, correspond to the piezoelectric transducer in a receiving
configuration. The thickness of the backing layer, as well, is not considered in
the analytical model, since the input is given by its impedance Zb. Thus, after
the water layer, one has: the matching layer (orange ring), piezoelectric layer
(yellow ring), and backing layer (gray ring). The dashed lines indicate that
the barrier can be removed, being the thickness of the water layer this time
a result of summing all the previous thicknesses after the transmitter, that is
dwater = d3 + d4 + d5 = 170.4 mm. In short, two configurations are tested. In
the first, there is a barrier of acetal placed between the two transducers, and
in the second, only water is present.

Figure 5.3: Acoustic-electric channel model for the pitch-catch analysis in
cylindrical coordinates.

In the configuration with the acetal barrier, the theoretical arrival time
for receiving the signal at the piezoelectric receiver is calculated considering
that the wave travels inside the internal water layer, the acetal barrier, and
the external water layer, before reaching the receiver transducer. Each time
interval (∆t1 and ∆tacetal) was calculated with (3-106) and (3-107) in section
3.6.3.2. Thus, the expected arrival time of the signal at the receiver transducer
is T1 = 108.58 µs, being the sum of the travel times within each layer. Next,
the wave reflects and goes towards the transmitter, being reflected again and
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acquired at the receiver once more, leading to the second arrival time T2 =
3 × T1 ≈ 325.74 µs. The same process can be repeated, and subsequent arrival
times are T3 ≈ 542.9 µs, T4 ≈ 760.06 µs and T5 ≈ 977.22 µs, for instance.
Other remarkable peaks are expected to appear in the results concerning
the internal reflections inside the inner layer of water. That is, reverberations
between the emitter and the barrier. For instance, the first time, corresponding
to the situation in which the wave propagates back to the emitter and then is
reflected towards the receiver, is calculated as T11 ≈ 208.74 µs. The subsequent
reflections are expected to be seen at T12 ≈ 308.9 µs, T13 ≈ 409.06 µs,
T14 ≈ 509.22 µs, and so on. Figure 5.4, illustrates a schematic representation
of the propagation paths that yield the aforementioned time of arrivals at the
receiver. Here, it is important to recall that some reflections in the diagram
were omitted since the main purpose is to highlight the aforementioned time
of arrival paths.

In the configuration without barrier, the theoretical arrival time for
receiving the signal at the piezoelectric receiver is simply calculated with the
entire thickness of the unique water layer, resulting in T1 ≈ 113.78 µs. After
this time, the wave reflects and goes to the transmitter, being reflected again
and acquired at the receiver once more, leading to the second arrival time
T2 = 3×T1 ≈ 341.35 µs. The same process can be repeated and the subsequent
arrival times are T3 ≈ 568.91 µs, T4 ≈ 796.47 µs and T5 ≈ 1024 µs, for
instance. Figure 5.5, illustrates a schematic representation of the propagation
paths that yield the aforementioned time of arrivals at the receiver.

Figure 5.4: Sketch for the expected arrival times in the pitch-catch test. Barrier
configuration.
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Figure 5.5: Sketch for the expected arrival times in the pitch-catch test. No-
barrier configuration.

The calculation of the arrival times from the pitch-catch test can be
summarized in a generalized form. For example, one can consider that the
second water layer of Figure 5.4 has a different thickness and, therefore, it
has a different travel time ∆t3 instead. In this case, the arrival times can be
calculated by

Tij = [3 + 2(i + j − 2)]∆t1 + [2i − 1](∆t2 + ∆t3), (5-2)

where the first index is related to the reverberations between the emitter and
the receiver, and the second index is related to the reverberations between the
emitter and the internal edge of the barrier. The interval ∆t2 is simply given
by

∆t2 = dbarrier

c
(medium)
L

, (5-3)

where, in the case with the acetal barrier, ∆t2 = ∆tacetal = 8.42 µs, and in
the no-barrier configuration, the thickness of the barrier layer is maintained,
whereas the wave speed is changed to that corresponding to water, leading to
∆t2 ≈ 13.62 µs. The models presented in this section have layers of water with
the same thickness. Thus, ∆t3 = ∆t1, and equation (5-2) can be rewritten as

Tij = 2(2i + j − 1)∆t1 + (2i − 1)∆t2. (5-4)
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5.3
Cylindrical Analytical Model Results

This section is devoted to presenting the main results for the implementa-
tion of the cylindrical models in a Matlab code. For the calculations, the same
computer presented in section 3.6.4 was used, that is, a single computer with
an Intel Core i5-7200 CPU at 2.50 GHz processor, with 16 GB of RAM. The
estimated arrival times of the signals after emitting the pulse are helpful for
analyzing the obtained results. Also, an analysis of increasing the radii of the
channel, preserving the thickness of each layer, was made in both test types.
At the end of the section, a convergence analysis is performed using the results
of the implementation of the plane wave analytical model. It is important to
mention that the same analyses with FEM models are not as practical as with
the analytical models since the transducer operates with frequencies close to
2 MHz, requiring a highly refined mesh, as seen in section 3.6.4.

5.3.1
Pulse-Echo Result

One first result is presented in Figure 5.6, in which the internal radius
of the piezoelectric transmitter is r1 = 5 mm. It is possible to see that the
echo arrival times are coherent with what was expected previously. In fact, the
echoes coming from the internal surface of the barrier arrive at T1 ≈ 100.6 µs
and T2 ≈ 201.2 µs, and the reverberations from the surfaces of the barrier can
be seen at T11 ≈ 117.4 µs, T12 ≈ 134.2 µs and T21 ≈ 217.6 µs. Another point
that can be mentioned is that the transducer band, related to the thickness
d defined in Table 5.1, can be clearly seen in the frequency domain. It is also
relevant to mention that this analytical result was obtained in 23.8518 s.
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Figure 5.6: Analytical result for the cylindrical wave pulse-echo model. Internal
radius of the channel r1 = 5 mm. The upper diagram is the signal in the time
domain. The lower is the corresponding spectrum.

DBD
PUC-Rio - Certificação Digital Nº 1712571/CA



Chapter 5. Results 111

As mentioned previously, a study varying the radii of the channel was
performed. This was due to the fact that expressions within the ABCD
parameters, developed in Chapter 4, presented an inversely proportional
dependence with the radius. To vary the radii of the channel, one can
simply modify the internal radius r1 of the piezoelectric transmitter, since the
subsequent layers have their radii given by adding their respective thickness
to the previous radius (see Figure 4.2 and Figure 4.4, for instance). All the
thicknesses of the layers are preserved.

Thus, the internal radius of the channel r1 can be gradually increased,
resulting in a decrease in the observed difference between the amplitudes of
the first and second peaks, at T1 ≈ 100.6 µs and T11 ≈ 117.4 µs, respectively.
In Figure 5.7, for example, corresponding to r1 = 50 cm, one can see that
the first peak increased in significance. Also, the frequency spectrum of the
received signals changed significantly in form. The amplitudes in both domains
also changed. It is also relevant to mention here that the computational time
was 23.888 s.
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Figure 5.7: Analytical result for the cylindrical wave pulse-echo model. Internal
radius of the channel r1 = 50 cm. The upper diagram is the signal in the time
domain. The lower is the corresponding spectrum.

Going further, when increasing the internal radius to r1 = 5 m, as can
be seen in Figure 5.8, it is possible to observe fewer changes in the form of the
peaks in time domain and in the frequency spectrum of the received signals
in the frequency domain. Furthermore, the arrival times of the echoes are
coherent with what was estimated before. The amplitudes in both domains
also changed a little differently this time, decreasing instead of increasing. The
computational time was 23.0113 s.

Another remarkable point that can be mentioned is that this result can
be somehow similar to the one presented in Figure 3.27 for the plane wave
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case when attenuation is not considered. In fact, without the attenuation, the
second peak at t ≈ 120 µs would have almost the same amplitude as the first
peak, being similar to the observed in Figure 5.7. Despite that, the arrival
times of the peaks, in both figures, are the same. Thus, similarities can be
reached, even considering transducers with different polarization directions in
that case.
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Figure 5.8: Analytical result for the cylindrical wave pulse-echo model. Internal
radius of the channel r1 = 5 m. The upper diagram is the signal in the time
domain. The lower is the corresponding spectrum.

Concerning the observed differences between the first echo from the inner
surface of the barrier and the first reverberation from the outer surface, mainly
for lower internal channel radius, as in r1 = 5 mm, one can see that, in fact,
increasing r1 leads to a great approximation between the areas of the curved
surfaces, as can be deduced from the expression given for δ in equation (4-33).
This does not explain the mentioned effect in the peaks, but can help giving
insight in this analysis.

5.3.2
Pitch-Catch

For the pitch-catch test, as pointed out previously in section 5.2.2, one has
two types of configuration. Firstly, a barrier is placed between the transmitter
and the receiver, in this case, a tube made from acetal. Secondly, there is a
configuration without the barrier, so the wave propagates directly from the
emitter to the receiver.
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5.3.2.1
Barrier Configuration

In Figure 5.9, one can see the response for the case with the presence of
the acetal barrier, in which the internal radius of the channel is r1 = 5 mm. As
expected, one can see the peaks corresponding to the reverberations between
the transducers (transmitter and receiver) at T1 ≈ 108.4 µs, T2 ≈ 325.6 µs
and T3 ≈ 542.1 µs. Also, the peaks corresponding to the reverberations inside
the outer layer of water (between the receiver and the external wall of the
barrier) can be seen at T11 ≈ 208.42 µs, T12 ≈ 308.42 µs, T13 ≈ 408.42 µs and
T14 ≈ 508.42 µs.
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Figure 5.9: Analytical result for the cylindrical wave pitch-catch model with the
acetal barrier. Internal radius of the channel r1 = 5 mm. The upper diagram
is the signal in the time domain. The lower is the corresponding spectrum.

As in section 5.3.1 for the pulse-echo results, the internal radius of the
channel r1 was gradually increased. In Figure 5.10, for instance, the same test
was performed with an internal radius r1 = 50 mm. In the same figure, one
can see that the arrival times have been kept, but with a slightly noticeable
difference in the amplitudes observable in the peaks after t = 200 µs. The
frequency spectrum of the received signals is also different in form.

Increasing, once more, the radius to r1 = 500 mm, as presented in Figure
5.11, one can see the same arrival times preserved and that the subsequent
peaks decreased in amplitude, compared to the first one at T1 ≈ 108.4 µs. The
frequency spectrum of the received signals is also different.
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Figure 5.10: Analytical result for the cylindrical wave pitch-catch model with
the acetal barrier. Internal radius of the channel r1 = 50 mm. The upper
diagram is the signal in the time domain. The lower is the corresponding
spectrum.
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Figure 5.11: Analytical result for the cylindrical wave pitch-catch model with
the acetal barrier. Internal radius of the channel r1 = 500 mm. The upper
diagram is the signal in the time domain. The lower is the corresponding
spectrum.

In Figure 5.12, corresponding to r1 = 5000 mm, one can see that the
arrival times remain the same. Also, the amplitudes of the peaks, compared to
the ones near T1 ≈ 108.4 µs, change less. It is also possible to observe that the
frequency spectrum of the received signals has fewer changes in comparison to
the previous case (r1 = 500 mm).
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Figure 5.12: Analytical result for the cylindrical wave pitch-catch model with
the acetal barrier. Internal radius of the channel r1 = 5000 mm. The upper
diagram is the signal in the time domain. The lower is the corresponding
spectrum.

5.3.2.2
No-Barrier Configuration

For the second configuration, without the presence of the acetal barrier
between the transducers, one can see the results in Figure 5.13, in which the
internal radius of the piezoelectric transmitter is r1 = 5 mm. The wave arrival
times at the receiver transducer are also coherent with what was expected. In
fact, in the figure, they arrive at T1 ≈ 113.6 µs, T2 ≈ 341.6 µs, T3 ≈ 569.2 µs,
T4 ≈ 796.7 µs and T5 ≈ 1024 µs. Another point that can be mentioned is that
the transducer band can also be seen clearly in the frequency domain. It is
also relevant to mention that this analytical result was obtained in 37.1929 s.

In Figure 5.14, for example, corresponding to r1 = 50 cm, one can see
that the frequency spectrum of the received signals has changed in the form.
The amplitudes in both domains also changed. However, the arrival times of
the peaks of the received signals still hold. It is also relevant here to mention
that this analytical result was obtained in 32.4366 s.
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Figure 5.13: Analytical result for the cylindrical wave pitch-catch model.
Internal radius of the channel r1 = 5 mm. The upper diagram is the signal in
the time domain. The lower is the corresponding spectrum.
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Figure 5.14: Analytical result for the cylindrical wave pitch-catch model.
Internal radius of the channel r1 = 50 cm. The upper diagram is the signal in
the time domain. The lower is the corresponding spectrum.

Increasing the internal radius to r1 = 5 m, as can be seen in Figure 5.8,
it is possible to observe little changes in the form of the frequency spectrum
of the received signals. Still, the arrival times of the signals are coherent with
what was estimated before. One can also observe that the amplitudes in both
domains increased. The computational time was 33.1908 s.
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Figure 5.15: Analytical result for the cylindrical wave pitch-catch model.
Internal radius of the channel r1 = 5 m. The upper diagram is the signal
in the time domain. The lower is the corresponding spectrum.

5.3.3
Convergence Test

From the results presented so far, it is possible to notice differences in
the frequency spectrum of the received signal, when the radius was increased.
The same is observed in the time domain when one draws attention to the
shape of each received signal. Aiming to better investigate the behavior of
the cylindrical results when the radius r1 is increased, a convergence analysis
compared to the corresponding plane wave model, depicted in section 3.4.1,
was carried out using the signals obtained from the pitch-catch test (no-barrier
configuration), presented previously in 5.3.2.2.

Before the comparisons, it is important to define an appropriate area for
using in the plane wave model, since the cylindrical layers present different
lateral areas at surfaces 1 and 2, as can be seen in Figure 5.16.

Figure 5.16: Lateral areas of the cylindrical model.

Thus, it was selected the average area Amed of the geometry as the
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equivalent area of the plane wave model. This area is calculated with the
aid of the average radius rmed, which is defined as

rmed = r1 + r2

2 . (5-5)

Therefore, the average area is simply calculated as

Amed = 2πrmeddv. (5-6)

Concerning the pitch-catch model (no-barrier configuration), presented
in Figure 5.5, one can obtain the average radius rmed of the entire model by
using the internal radius of the first piezoelectric transmitter as r1 and the
external radius of the piezoelectric receiver as r2. In practice, r1 = rPiezo

1 and
r2 = r1 + ∑5

i=1 di, using equation (5-1), taking into account the five layers of
the model.

Since the internal radius of the cylindrical model r1 is being changed,
preserving the distance between emitter and receiver, the average area Amed

is also changed. Thus, the area of the plane wave model is updated at each
comparison. In Figure 5.17, for instance, one can see the overlay of the first
received signals, near T1 ≈ 113.6 µs, from the pitch-catch tests presented in
section 5.3.2.2, when the internal radius r1 is changed. From this figure, one
can see that the shape and the amplitude of the signal vary compared to the
reference (plane), being visually more coincident when r1 = 500 m.
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Figure 5.17: Comparison between the first signal from the pitch-catch results
(no-barrier configuration), varying the internal radius r1 and the corresponding
plane wave model results.

One point that is important to mention at this stage is that, in this
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case, no amplitude normalization is performed. Thus, the waveforms can be
completely compared, even considering their amplitudes.

In order to quantitatively visualize the aforementioned effect, the root
mean squared error (RMSE) was calculated for each radius r1 value. This
metric can be defined by the following expression [73]:

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2, (5-7)

in which y, in this case, is the sampled signal from the corresponding plane
wave model, and ŷ is the sampled signal obtained from the cylindrical model
for each r1 value. The subscript i, here, refers to the signal sampling index,
which varies from 1 to the N , which is the signal sampling length.

In Figure 5.18, one can see the RMSE calculated at each radius r1. In
there, the changes are more significant at lower values, being less significant
when the radius is highly increased, mainly after 200 m. The point here is that,
so far, these results suggest fewer differences between the cylindrical and plane
wave results when the radius is highly increased.
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Figure 5.18: RMSE comparison between cylindrical and plane pitch-catch
models.

From this metric example, it is possible to observe that the cylindrical
model tends to the plane model when the internal radius of the cylindrical
model is increased. In fact, one can recall that, within the development of
the ABCD parameters in cylindrical coordinates, many terms depend on the
parameter r1, as for example δ or δpz factors from equations (4-33) and (4-
52), respectively. Other terms also depended on r1 as, for example, χ1 and
χ4 defined in equations (4-35a) and (4-35d). Several other terms encountered
through the development could be cited, but the main point is that the
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aforementioned ones are the main parameters that appear in the expressions
for the ABCD parameters. Thus, the results presented indicate that the overall
behavior of the developed analytical model, by means of the two-port network
approach, applied to the acoustic-electric transmission channel in cylindrical
coordinates, is coherent with the plane wave when the transducer polarization
matches, i.e., using transversal polarization, mainly for high radii values.

5.4
Experimental Test

Aiming at a more realistic application of the presented analytical model-
ing, an experimental test was prepared. One point that is important to mention
is that the radiation of the acoustic waves through different directions is ex-
pected on the contact surfaces between the transducer and the subsequent
elastic layer, of larger size, as observed in the previous chapters. However, as
mentioned in Chapter 4, for the sake of simplicity and to focus on the de-
veloped ABCD parameters, the diffractive losses are not considered in the
modeling. Concerning the experiment, a pitch-catch-like test was performed.
The transducer for the emission of the cylindrical wave signals is presented in
Figure 5.19, and has electrical polarization towards its axial direction. This
transducer is submerged in water and emits a pulse that is captured by a hy-
drophone at a certain distance from its center, being both elements placed in
an experimental setup, as can be seen in Figure 5.20.

Figure 5.19: Cylindrical transducer for the experimental test.

At this point, it is important to remark that, unlike in section 5.2.2, where
a cylindrical transducer is used to receive the acoustic waves in the analytical
modeling, in this experiment, the reception is made with a hydrophone. In this
case, the hydrophone behaves as a punctual receiver. Thus, the sensing on the
cylindrical waves is independent of the azimuthal position. The experiment,
in short, consisted in generating cylindrical waves from a transducer, with
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the appropriate signal, and capturing them at the hydrophone positioned at
the same horizontal plane of the disk, at different distances from the center.
Figure 5.20 presents the block diagram of the test as well as the detail of the
positioning of the transducer and hydrophone.

Figure 5.20: Experimental test: (a) block diagram; (b) transmission detail.

The properties of the piezoelectric transducer of the test used in the
analytical model are presented in Table 5.3. In this case, a PZT-5A type
was selected, from the manufacturer APC International Ltd., with complete
properties found in [74]. By its thickness d, it was seen experimentally, and
with the aid of a numerical simulation, that the first radial natural frequency
of this transducer is fr = 49 kHz. Unlike the transducers presented in Chapter
3, no matching impedance layer was used. However, a backing layer, made
using epoxy resin, was present in the setup and had an impedance considered
as Zb = 884.36 (MRayl) [75]. The hydrophone selected for the experiment is
from Benthowave Instrument Inc., being a BII-7005 PG type, with a frequency
range in the water of 1 Hz ∼ 400 kHz at ± 3dB V/µPa. The complete properties
can be found in [76]. The signal was generated with a function generator from
Agilent, model 33129A, and amplified by a power amplifier Krohn-Hite 7500.
The oscilloscope was the same one used in the experiment of section 3.6.3.3,
that is, a Tektronix MDO4104B-3 Mixed Domain Oscilloscope. The properties
of the water layer for the analytical model are the same presented in Table 5.2.
The input signal for the analytical model is presented in Figure 5.21. In this
case, the bandwidth was 100 kHz, containing the first radial frequency of the
transducer (fr = 49 kHz).
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Table 5.3: Parameters for the piezoelectric transducer of the cylindrical wave
experiment. Based on the properties presented in [74,77].

Properties PZT
(PZT-5A)

dv [mm] 6.4
r1 [mm] 6.4
d [mm] 6.2
ρ [kg/m3] 7700
ϵε

zz [F/m] 8.09×10−9

ez1 [C/m2] -3.09
cD

11 [N/m2] 1.11×1011

cD
12 [N/m2] 7.95×1010
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Figure 5.21: Input signal of the analytical model, for a transducer with fc = 49
kHz. The upper diagram is the signal in the time domain. The lower is the
corresponding spectrum.

5.4.1
Experimental Result

With the aforementioned geometric and material properties, it was
possible to obtain a first analytical result. Before that, in order to obtain a
preliminary performance analysis of the analytical model, a corresponding 2D
axisymmetric FEM model was prepared, as can be seen in Figure 5.22. In this
FEM model, three layers were placed (from left to right), namely: backing,
transducer, and water. Here it is important to remark on two main aspects
that distinguish the FEM model from the analytical model. The first one is the
presence of the backing layer, which in the analytical model is only represented
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by its impedance, not being considered in the matrix multiplication. The
second one is the fact that in the FEM model, the signal acquisition is made
by means of acoustic pressure at a single point, instead of voltage at a receiver
transducer, placed at a distance of d2 = 357 mm away from the transducer’s
external surface, as also illustrated in Figure 5.22. This distance is the same,
measured in the experiment, between the transducer and the hydrophone.
Concerning only the FEM modeling, one can observe that the absorbing layers
above and below the liquid layers (PML condition), mentioned in section
3.6.3.4 for the plane wave case, were not considered here because the radiation
of the acoustic waves is not present in the current analytical modeling. Another
important point that deserves mention is that the FEM analysis was possible to
be carried out in an agile way due to the order of magnitude of the frequencies
treated in the experiment, requiring a relatively coarse mesh. In fact, equation
(3-109) from Chapter 3 indicates that the sizes of the edges of the mesh can be
larger since the frequencies of this experiment are of the order of kHz instead
of MHz.

Figure 5.22: Simulation of the cylindrical wave propagation experimental test
for a transducer with fc = 49 kHz. Snapshot at t = 329.33 µs. Colors related
to the acoustic pressure in the medium.

The results are presented in Figure 5.23, corresponding to the acquisition
of the first signal at d2 = 357 mm. Here, one can recall that the analytical
model was obtained by reading the signal from a cylindrical receiver transducer
surrounding the layers, while the experimental and FEM results were obtained
from reading on a single point in a fixed azimuthal position of the propagation.
Thus, the signals of Figure 5.23 are presented in an amplitude normalized form,
in which the maximum value of each vector data is used for the normalization.
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Figure 5.23: Comparison between the results of the first received signal at
the cylindrical wave test, in the no-barrier configuration. The signals are
normalized.

It is important to mention that the analytical result was obtained in 12.69
s, from a run in a simple computer with 4x Intel Core i5-7200 CPU at 2.50 GHz
processor, with 16 GB of RAM. The FEM model result was obtained in 49 s,
from a more powerful machine with an Intel Xeon Gold 6244 CPU at 3.60 GHz
processor, with 2 TB of RAM. A comparison between the methods, despite the
difference in the dimensions discussed in section 3.6.3.4, is presented in Table
5.4. Thus, one can see that the analytical model, although run from a less
powerful machine, could give the same result approximately 3.86 times faster.
This performance, in fact, is more significant when increasing the frequency of
work.

Table 5.4: Comparison between methods for the 45 kHz cylindrical transducer
transmission test.

Method Machine Processor RAM
(GB)

Time
Run
(s)

Analytical Laptop Intel Core i5-7200U
CPU @ 2.50 GHz 16 12.69

FEM Rack Server Intel Xeon Gold 6244
CPU @ 3.60 GHz 2000 49

The results presented in Figure 5.23 are quite similar and can, in a
sense, complement the validation of the analytical model. The next cases
are an extension of the presented configuration. Only the results of the FEM
simulations and the analytical models are presented hereafter.
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5.4.2
Other Comparisons

In order to explore the analytical approach, two configurations were
modeled using the same transducer used in the experiment from section 5.4.
In this case, only comparisons with the FEM model were carried out. The
first configuration corresponded to inserting a receiver transducer in the FEM
model, as can be seen in Figure 5.24.

Figure 5.24: Simulation of the cylindrical wave propagation test for a trans-
ducer of fc = 49 kHz, placed as transmitter and receiver. Snapshot at
t = 311 µs. Colors related to the acoustic pressure in the medium.

This configuration, in fact, is the same as the one used for the analytical
model in the previous section concerning the experimental test. However, in
that case, only the first region of the received signal from the analytical model
was presented in Figure 5.23 since no reflections were expected. Now, with
the aforementioned modification in the FEM model, some reflections can be
observed, as in Figure 5.25.
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Figure 5.25: Comparison between the results of the received signals at the
receiver transducer of the cylindrical wave test modeling. Both signals are
normalized.
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5.4.2.1
Barrier Configuration

After inserting the receiver transducer in the FEM model, a tube was
inserted between the emitter and the receiver in a through-the-barrier trans-
mission configuration. In Figure 5.26, one can see the internal radius r1 and
the thicknesses of each layer.

Figure 5.26: Simulation of the cylindrical wave propagation test, for a trans-
ducer with fc = 49 kHz, with the presence of a tubular barrier. Snapshot at
t = 156 µs. Colors related to the acoustic pressure in the medium.

The main properties of the tube, for the modeling, are presented in Table
5.5. The radius ri is the internal radius of the tube. From this information, one
can obtain the thickness of the internal layer of water as d2 = 177 mm. For this
analysis, the second layer of water also had the same thickness, being d4 = 177
mm. The main properties of the water layer are the same as those presented
in Table 5.2, except for the length of thicknesses defined here.

Table 5.5: Main parameters of the tube used in the cylindrical wave test
simulation. Obtained from [58].

Properties/
Material

Tube
(Steel)

ρ [kg/m3] 7750
cL [m/s] 5838
ri [mm] 189.6
d [mm] 7
c11 [N/m2] 2.7×1011

c12 [N/m2] 1.10×1011

With the presence of the barrier, some other reflections are expected to
be seen, as pointed out in section 5.2.2. For example, using equation (5-4),
since the distances of the layers of water are the same, one can obtain the
following arrival times presented in Table 5.6. In less words, the times T1, T2,
T3, T4, T5 and T6 correspond to the instants when the waves, coming directly
from the transmitter trespassing the barrier, reach the receiver. The times T11,
T12 and T13, as well as T21, T22, T31, T41, T51 and T61, correspond to the instants
when the waves coming from the internal reflections inside the tube reach the
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receiver. More details of these arrival times can be seen in section 5.2.2, where
an illustration of the pitch-catch scheme with the barrier is presented in Figure
5.4.

Table 5.6: Theoretical arrival times of the reflections of the cylindrical wave
test simulation.

Times Values [µs]

T1 237.58
T11 473.96
T12 710.34
T13 946.72
T2 712.74
T21 949.12
T22 1185.50
T3 1187.90
T31 1424.28
T4 1663.10
T41 1899.43
T5 2138.21
T51 2374.60
T6 2613.37
T61 2849.75

From the values presented in Table 5.6, one can observe that some waves
can overlap each other. For example, the times T12 and T2 are close, as well as
T13 and T21 are. This fact can be one of the reasons for the effect observed in
Figure 5.27, where some amplitudes seem to be increasing in some regions of
the plot presenting the signals acquired at the receiver. Despite this effect, one
can also see that both models are coherent with the expected arrival times of
reflections. In Figure 5.28 and Figure 5.29, one can see with more details an
overlay of the results, in two different ranges of time.
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Figure 5.27: Comparison between the results of the received signal at the cylin-
drical wave test with the presence of the barrier. Both results are normalized.
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Figure 5.28: Comparison between the results of the first received signal at
the cylindrical wave test with the presence of the barrier. Both signals are
normalized in the current interval.
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Figure 5.29: Comparison between the results of the third received signal at
the cylindrical wave test with the presence of the barrier. Both signals are
normalized in the presented interval.

One remarkable thing that can be observed in these two figures is that
the signals almost coincide in form and phase, suggesting a good agreement
between the two approaches. Another point that can be mentioned is that
the analytical modeling took approximately 41.55 s to be obtained, while the
FEM model took 68 s. The details of the machines used for the comparison
can be seen in Table 5.7. Despite the difference in the dimension of the models,
as discussed in section 3.6.3.4, one can notice that the analytical result was
obtained with a less powerful machine.
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Table 5.7: Comparison between methods for the transmission test with the
barrier.

Method Machine Processor RAM
(GB)

Time
Run
(s)

Analytical Laptop Intel Core i5-7200U
CPU @ 2.50 GHz 16 41.55

FEM Rack Server Intel Xeon Gold 6244
CPU @ 3.60 GHz 2000 68

In short, in the considered intervals, an agreement between all the
presented results was possible to be seen, even not considering the attenuation
in the analytical model. Thus, the results presented so far, in a sense, could
complement the validation of the developed theory for modeling cylindrical
waves using the two-port network approach.

This last example, despite its simplicity, is an interesting case that
can be extended for some other practical cases in which communication
through curved surfaces is required [16–18]. In [78], for example, there is a
configuration relatively similar to the one presented in this last section, where
transmission through water is required. By adding more layers to this model,
one can simulate the communication between two pipes, referred to as tubing
and casing, often encountered in the context of wellbore monitoring [78].
Concerning the pulse-echo analysis, presented in section 5.3.1, applications
can be found in the context of the cement integrity evaluation [22, 31, 34],
using ultrasonic tools sometimes referred to as USIT [79]. These tools are
usually placed at the center of the wellbore in a configuration similar to the
one presented in Figure 1.5, from Chapter 1.
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6
Conclusion

In this thesis, the two-port network approach, in the context of acoustic-
electric problems, was presented as an alternative for modeling wave propaga-
tion in materials, requiring little computational effort. Initially, the formulation
for the plane wave propagation was presented, for both piezoelectric and non-
piezoelectric materials. The so-called ABCD parameters were obtained using
the wave equation and the appropriate boundary conditions, leading to ex-
pressions in terms of the acoustic impedance of each medium. Using the same
steps taken for obtaining the mentioned parameters from the literature, it was
possible to derive different ABCD parameters for the plane wave propagation
in a transducer transversely polarized. It is important to address that this con-
figuration was developed in this thesis, leading to novel expressions, being the
first contribution of this thesis. In fact, this formulation was necessary for the
comparisons with the cylindrical propagation development, as reported in the
following chapters. To quantitatively assess the effectiveness of the approach,
a preliminary experimental pulse-echo test, and a corresponding FEM model,
were carried out. Results were compared and discussed. The comparisons be-
tween the methods helped to quantitatively clarify the advantages of using the
proposed analytical approach.

Next, the formulation was extended for the cylindrical wave propagation,
the second contribution of this thesis, using the same steps taken for developing
the plane wave case. The basis was changed to cylindrical coordinates, and
then, new expressions were obtained in the two-port network approach context.
It is important to recall that the impedance analogy was important to help in
linking the transfer matrices, by relating electrical and mechanical quantities.
Besides that, the impedance concept helped to understand and adequately
separate the impedance terms that appeared during the algebraic development.
The resulting formulation was organized so that the expressions could be
visually compared to the ones found for the plane wave propagation. Also,
the terms were displayed in a clear and useful form for coding purposes.

With the calculated ABCD parameters for the cylindrical wave propa-
gation, tests were performed, namely pulse-echo and pitch-catch, the latter
further explored for the validations. For both tests, the internal radius of the
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channel r1 was varied, and changes in the results could be observed. In the
pitch-catch analysis, one metric was adopted in order to quantitatively ob-
serve the effects of increasing the radius r1 of the channel, namely RMSE.
In this analysis, it was concluded that there is no relative variation for large
radii. In fact, this behavior was coherent with what was observed through the
development of the ABCD parameters in Chapter 4 because many expressions
in there depended on r1, being one of the possible reasons for the observed
asymptotic behavior in the error plots.

Finally, in order to further assess the validation of the method, an
experimental test was undertaken, and the results were compared. Firstly,
a cylindrical transducer was selected for generating cylindrical waves inside
water. Then, it was immersed in a water tank, and the resultant wavefront
was captured by a hydrophone located at a certain distance from the emitter.
Aiming to explore the analytical model, two FEM simulations were carried out,
being more similar to the configurations developed in the analytical modeling.
In this case, the presence of the cylindrical transducer receiver led to reflections
that were captured by both models. Furthermore, a tube was placed between
the emitter and the transmitter in such a through-the-barrier transmission
configuration. And, in both modelings, the same behavior of the responses
was observed, being coherent with the calculated arrival times of the expected
reflections. Furthermore, the last example can be a basis for many applications
in the literature, for example, data and power communication between curved
barriers as seen in [16], [17], [18]. Another example that can be addressed is the
problem of communication between two pipes inside a borehole, as pointed out
in [78], in the context of wellbore monitoring. Using the approach in a pulse-
echo configuration, one can find applications in the cement integrity evaluation
using ultrasonic tools, as can be seen in [22], [31] and [34]. Despite the fact
that the models do not consider attenuation, the results almost coincided in
phase and in oscillating amplitudes, reinforcing the validity of the developed
analytical method.

Concerning the performance of the method, it was observed through
the thesis that the same results, compared to numerical methods such as the
finite element method, were obtained in a considerably faster time and with
less computational effort. In fact, the differences become more pronounced at
higher frequencies, as seen in the results presented for the plane wave pulse-
echo tests in Chapter 3, on the order of MHz. Thus, the presented approach,
developed for the cylindrical wave case, could be a good choice for situations in
which higher frequencies are required, thus avoiding a long time for calculations
and obtaining results. Furthermore, the presented approach has space for being
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improved to take into account the attenuation. This can be done by changing
the impedance term in (4-36), making it similar to the expression in (3-21),
for the plane wave case, or developing another appropriate form of inserting
the losses. Summing up, the basis of the approach for the cylindrical waves has
been derived here and can be further extended.

6.1
Further Studies

From this thesis, future works can be derived and can be addressed, for
instance:

1. Improving the analytical modeling in order to consider attenuation in
the elastic layers;

2. Deriving expressions for the losses in the transversely polarized piezo-
electric transducers;

3. Developing the modeling for the radiation losses on the contact surface
between the cylindrical transducer and the propagation medium with a
larger height;

4. Developing the cylindrical wave two-port network formulation for a radial
polarization piezoelectric transducer;

5. Developing the spherical wave propagation two-port network formula-
tion;

6. Developing the shear plane wave propagation two-port network formula-
tion;

7. Developing the cylindrical wave two-port network formulation for a
curved section (∆θ < 2π).
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